These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 16869691)
1. Substituent effect on a family of quinones in aprotic solvents: an experimental and theoretical approach. Frontana C; Vázquez-Mayagoitia A; Garza J; Vargas R; González I J Phys Chem A; 2006 Aug; 110(30):9411-9. PubMed ID: 16869691 [TBL] [Abstract][Full Text] [Related]
2. Accurate calculation of absolute one-electron redox potentials of some para-quinone derivatives in acetonitrile. Namazian M; Coote ML J Phys Chem A; 2007 Aug; 111(30):7227-32. PubMed ID: 17625811 [TBL] [Abstract][Full Text] [Related]
3. Structure and function of quinones in biological solar energy transduction: a differential pulse voltammetry, EPR, and hyperfine sublevel correlation (HYSCORE) spectroscopy study of model benzoquinones. Weyers AM; Chatterjee R; Milikisiyants S; Lakshmi KV J Phys Chem B; 2009 Nov; 113(46):15409-18. PubMed ID: 19835408 [TBL] [Abstract][Full Text] [Related]
4. Where is the spin? Understanding electronic structure and g-tensors for ruthenium complexes with redox-active quinonoid ligands. Remenyi C; Kaupp M J Am Chem Soc; 2005 Aug; 127(32):11399-413. PubMed ID: 16089469 [TBL] [Abstract][Full Text] [Related]
5. Quantum chemical modelling of the rate determining step for oxygen reduction on quinones. Wass JR; Ahlberg E; Panas I; Schiffrin DJ Phys Chem Chem Phys; 2006 Sep; 8(36):4189-99. PubMed ID: 16971987 [TBL] [Abstract][Full Text] [Related]
6. Influence of molecular geometry, exchange-correlation functional, and solvent effects in the modeling of vertical excitation energies in phthalocyanines using time-dependent density functional theory (TDDFT) and polarized continuum model TDDFT methods: can modern computational chemistry methods explain experimental controversies? Nemykin VN; Hadt RG; Belosludov RV; Mizuseki H; Kawazoe Y J Phys Chem A; 2007 Dec; 111(50):12901-13. PubMed ID: 18004829 [TBL] [Abstract][Full Text] [Related]
7. Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. Zhu XQ; Wang CH J Org Chem; 2010 Aug; 75(15):5037-47. PubMed ID: 20604547 [TBL] [Abstract][Full Text] [Related]
8. Quinone 1 e Huynh MT; Anson CW; Cavell AC; Stahl SS; Hammes-Schiffer S J Am Chem Soc; 2016 Dec; 138(49):15903-15910. PubMed ID: 27960306 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanical devices based on quinone-pyrrole and quinone-indole dyads: a computational study. Kacprzak S; Kaupp M J Phys Chem B; 2006 Apr; 110(15):8158-65. PubMed ID: 16610919 [TBL] [Abstract][Full Text] [Related]
10. Oxygen atom transfer energetics: assessment of the effect of method and solvent. Dinescu A; Whiteley C; Combs RR; Cundari TR J Phys Chem A; 2006 Mar; 110(11):4053-6. PubMed ID: 16539428 [TBL] [Abstract][Full Text] [Related]
11. Computation of the redox and protonation properties of quinones: towards the prediction of redox cycling natural products. Cape JL; Bowman MK; Kramer DM Phytochemistry; 2006 Aug; 67(16):1781-8. PubMed ID: 16872647 [TBL] [Abstract][Full Text] [Related]
12. Improved density functional description of the electrochemistry and structure-property descriptors of substituted flavins. North MA; Bhattacharyya S; Truhlar DG J Phys Chem B; 2010 Nov; 114(46):14907-15. PubMed ID: 20961131 [TBL] [Abstract][Full Text] [Related]
13. Theoretical studies on the redox potentials of Fe dinuclear complexes as models for hydrogenase. Roy LE; Batista ER; Hay PJ Inorg Chem; 2008 Oct; 47(20):9228-37. PubMed ID: 18811143 [TBL] [Abstract][Full Text] [Related]
14. Short-lived quinonoid species from 5,6-dihydroxyindole dimers en route to eumelanin polymers: integrated chemical, pulse radiolytic, and quantum mechanical investigation. Pezzella A; Panzella L; Crescenzi O; Napolitano A; Navaratman S; Edge R; Land EJ; Barone V; d'Ischia M J Am Chem Soc; 2006 Dec; 128(48):15490-8. PubMed ID: 17132016 [TBL] [Abstract][Full Text] [Related]
16. From solvent fluctuations to quantitative redox properties of quinones in methanol and acetonitrile. VandeVondele J; Sulpizi M; Sprik M Angew Chem Int Ed Engl; 2006 Mar; 45(12):1936-8. PubMed ID: 16485311 [No Abstract] [Full Text] [Related]
17. Accurate redox potentials of mononuclear iron, manganese, and nickel model complexes*. Galstyan A; Knapp EW J Comput Chem; 2009 Jan; 30(2):203-11. PubMed ID: 18548523 [TBL] [Abstract][Full Text] [Related]
18. Theoretical determination of the redox potentials of NRH:quinone oxidoreductase 2 using quantum mechanical/molecular mechanical simulations. Rauschnot JC; Yang C; Yang V; Bhattacharyya S J Phys Chem B; 2009 Jun; 113(23):8149-57. PubMed ID: 19445526 [TBL] [Abstract][Full Text] [Related]
19. Electrochemistry of potential bioreductive alkylating quinones: its use in the development of new aziridinylquinones. Driebergen RJ; Holthuis JJ; Hulshoff A; Postma-Kelder SJ; Verboom W; Reinhoudt DN; Lelieveld P Anticancer Res; 1986; 6(4):605-19. PubMed ID: 3752941 [TBL] [Abstract][Full Text] [Related]
20. The structure and function of quinones in biological solar energy transduction: a cyclic voltammetry, EPR, and hyperfine sub-level correlation (HYSCORE) spectroscopy study of model naphthoquinones. Coates CS; Ziegler J; Manz K; Good J; Kang B; Milikisiyants S; Chatterjee R; Hao S; Golbeck JH; Lakshmi KV J Phys Chem B; 2013 Jun; 117(24):7210-20. PubMed ID: 23676117 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]