BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16869723)

  • 1. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength.
    Hernandez CJ; Gupta A; Keaveny TM
    J Bone Miner Res; 2006 Aug; 21(8):1248-55. PubMed ID: 16869723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical effects of simulated resorption cavities in cancellous bone across a wide range of bone volume fractions.
    Easley SK; Chang MT; Shindich D; Hernandez CJ; Keaveny TM
    J Bone Miner Res; 2012 Sep; 27(9):1927-35. PubMed ID: 22576976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of tensile-compressive loading mode and microarchitecture on microdamage in human vertebral cancellous bone.
    Lambers FM; Bouman AR; Tkachenko EV; Keaveny TM; Hernandez CJ
    J Biomech; 2014 Nov; 47(15):3605-12. PubMed ID: 25458150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of resorption cavities on bone stiffness is site dependent.
    Vanderoost J; van Lenthe GH
    Comput Methods Biomech Biomed Engin; 2014; 17(13):1483-91. PubMed ID: 23282095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voxel size and measures of individual resorption cavities in three-dimensional images of cancellous bone.
    Tkachenko EV; Slyfield CR; Tomlinson RE; Daggett JR; Wilson DL; Hernandez CJ
    Bone; 2009 Sep; 45(3):487-92. PubMed ID: 19482097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical failure begins preferentially near resorption cavities in human vertebral cancellous bone under compression.
    Slyfield CR; Tkachenko EV; Fischer SE; Ehlert KM; Yi IH; Jekir MG; O'Brien RG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jun; 50(6):1281-7. PubMed ID: 22426306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue-induced microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces.
    Goff MG; Lambers FM; Nguyen TM; Sung J; Rimnac CM; Hernandez CJ
    Bone; 2015 Oct; 79():8-14. PubMed ID: 26008609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone.
    Goff MG; Slyfield CR; Kummari SR; Tkachenko EV; Fischer SE; Yi YH; Jekir MG; Keaveny TM; Hernandez CJ
    Bone; 2012 Jul; 51(1):28-37. PubMed ID: 22507299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical consequences of bone loss in cancellous bone.
    van der Linden JC; Homminga J; Verhaar JA; Weinans H
    J Bone Miner Res; 2001 Mar; 16(3):457-65. PubMed ID: 11277263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perforation of cancellous bone trabeculae by damage-stimulated remodelling at resorption pits: a computational analysis.
    McNamara LM; Prendergast PJ
    Eur J Morphol; 2005; 42(1-2):99-109. PubMed ID: 16123029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element calculated uniaxial apparent stiffness is a consistent predictor of uniaxial apparent strength in human vertebral cancellous bone tested with different boundary conditions.
    Yeni YN; Fyhrie DP
    J Biomech; 2001 Dec; 34(12):1649-54. PubMed ID: 11716868
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover.
    Eswaran SK; Allen MR; Burr DB; Keaveny TM
    J Biomech; 2007; 40(15):3424-31. PubMed ID: 17618634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses.
    Alwood JS; Yumoto K; Mojarrab R; Limoli CL; Almeida EA; Searby ND; Globus RK
    Bone; 2010 Aug; 47(2):248-55. PubMed ID: 20466089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of mechanical properties of the cancellous bone of the mandibular condyle.
    van Ruijven LJ; Giesen EB; Farella M; van Eijden TM
    J Dent Res; 2003 Oct; 82(10):819-23. PubMed ID: 14514763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between compressive properties of human os calcis cancellous bone and microarchitecture assessed from 2D and 3D synchrotron microtomography.
    Follet H; Bruyère-Garnier K; Peyrin F; Roux JP; Arlot ME; Burt-Pichat B; Rumelhart C; Meunier PJ
    Bone; 2005 Feb; 36(2):340-51. PubMed ID: 15780961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.