BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 16869748)

  • 41. A specific gene expression signature for visceral organ metastasis in breast cancer.
    Savci-Heijink CD; Halfwerk H; Koster J; Horlings HM; van de Vijver MJ
    BMC Cancer; 2019 Apr; 19(1):333. PubMed ID: 30961553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive epigenetic analyses reveal master regulators driving lung metastasis of breast cancer.
    Li K; Xu C; Du Y; Junaid M; Kaushik AC; Wei DQ
    J Cell Mol Med; 2019 Aug; 23(8):5415-5431. PubMed ID: 31215771
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Establishment of a novel orthotopic model of breast cancer metastasis to the lung.
    Guo W; Zhang S; Liu S
    Oncol Rep; 2015 Jun; 33(6):2992-8. PubMed ID: 25963127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organ-selective chemoresistance in metastasis from human breast cancer cells: inhibition of apoptosis, genetic variability and microenvironment at the metastatic focus.
    Gu B; España L; Méndez O; Torregrosa A; Sierra A
    Carcinogenesis; 2004 Dec; 25(12):2293-301. PubMed ID: 15347599
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Causal Bayesian gene networks associated with bone, brain and lung metastasis of breast cancer.
    Park SB; Hwang KT; Chung CK; Roy D; Yoo C
    Clin Exp Metastasis; 2020 Dec; 37(6):657-674. PubMed ID: 33083937
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Breast cancer metastasis-associated genes: role in tumour progression to the metastatic state.
    Nicolson GL
    Biochem Soc Symp; 1998; 63():231-43. PubMed ID: 9513727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. EPCR promotes breast cancer progression by altering SPOCK1/testican 1-mediated 3D growth.
    Perurena N; Zandueta C; Martínez-Canarias S; Moreno H; Vicent S; Almeida AS; Guruceaga E; Gomis RR; Santisteban M; Egeblad M; Hermida J; Lecanda F
    J Hematol Oncol; 2017 Jan; 10(1):23. PubMed ID: 28103946
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptomic analysis identifies organ-specific metastasis genes and pathways across different primary sites.
    Zhang L; Fan M; Napolitano F; Gao X; Xu Y; Li L
    J Transl Med; 2021 Jan; 19(1):31. PubMed ID: 33413400
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease.
    Kluger HM; Chelouche Lev D; Kluger Y; McCarthy MM; Kiriakova G; Camp RL; Rimm DL; Price JE
    Cancer Res; 2005 Jul; 65(13):5578-87. PubMed ID: 15994930
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression of Cadherin-17 Promotes Metastasis in a Highly Bone Marrow Metastatic Murine Breast Cancer Model.
    Okada T; Kurabayashi A; Akimitsu N; Furihata M
    Biomed Res Int; 2017; 2017():8494286. PubMed ID: 28197418
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Correlation between extent of osteolytic damage and metastatic burden of human breast cancer metastasis in nude mice: real-time PCR quantitation.
    Tester AM; Sharp JA; Dhanesuan N; Waltham M; Thompson EW
    Clin Exp Metastasis; 2002; 19(5):377-83. PubMed ID: 12198765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metastasis of hormone-independent breast cancer to lung and bone is decreased by alpha-difluoromethylornithine treatment.
    Richert MM; Phadke PA; Matters G; DiGirolamo DJ; Washington S; Demers LM; Bond JS; Manni A; Welch DR
    Breast Cancer Res; 2005; 7(5):R819-27. PubMed ID: 16168128
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a metastasis signature and the DLX4 homeobox protein as a regulator of metastasis by combined transcriptome approach.
    Tomida S; Yanagisawa K; Koshikawa K; Yatabe Y; Mitsudomi T; Osada H; Takahashi T
    Oncogene; 2007 Jul; 26(31):4600-8. PubMed ID: 17260014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microarrays bring new insights into understanding of breast cancer metastasis to bone.
    Welch DR
    Breast Cancer Res; 2004; 6(2):61-4. PubMed ID: 14979907
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bone sialoprotein-αvβ3 integrin axis promotes breast cancer metastasis to the bone.
    Wang L; Song L; Li J; Wang Y; Yang C; Kou X; Xiao B; Zhang W; Li L; Liu S; Wang J
    Cancer Sci; 2019 Oct; 110(10):3157-3172. PubMed ID: 31432600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Breast cancer bone metastasis: molecular basis of tissue tropism.
    Kang Y
    J Musculoskelet Neuronal Interact; 2004 Dec; 4(4):379-80. PubMed ID: 15758269
    [No Abstract]   [Full Text] [Related]  

  • 57. Human tissue-specific microenvironment: an essential requirement for mouse models of breast cancer.
    Xia TS; Wang J; Yin H; Ding Q; Zhang YF; Yang HW; Liu XA; Dong M; Du Q; Ling LJ; Zha XM; Fu W; Wang S
    Oncol Rep; 2010 Jul; 24(1):203-11. PubMed ID: 20514463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metastasis suppressor genes: basic biology and potential clinical use.
    Steeg PS; Ouatas T; Halverson D; Palmieri D; Salerno M
    Clin Breast Cancer; 2003 Apr; 4(1):51-62. PubMed ID: 12744759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants.
    Lu X; Kang Y
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9385-90. PubMed ID: 19458257
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tumour but not stromal expression of β3 integrin is essential, and is required early, for spontaneous dissemination of bone-metastatic breast cancer.
    Carter RZ; Micocci KC; Natoli A; Redvers RP; Paquet-Fifield S; Martin AC; Denoyer D; Ling X; Kim SH; Tomasin R; Selistre-de-Araújo H; Anderson RL; Pouliot N
    J Pathol; 2015 Apr; 235(5):760-72. PubMed ID: 25430721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.