BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 16869773)

  • 1. Mitochondria and cancer: Warburg addressed.
    Wallace DC
    Cold Spring Harb Symp Quant Biol; 2005; 70():363-74. PubMed ID: 16869773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria and reactive oxygen species in renal cancer.
    Hervouet E; Simonnet H; Godinot C
    Biochimie; 2007 Sep; 89(9):1080-8. PubMed ID: 17466430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells.
    Li X; Han G; Li X; Kan Q; Fan Z; Li Y; Ji Y; Zhao J; Zhang M; Grigalavicius M; Berge V; Goscinski MA; Nesland JM; Suo Z
    Oncotarget; 2017 Jul; 8(28):46363-46380. PubMed ID: 28624784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.
    Lu J; Tan M; Cai Q
    Cancer Lett; 2015 Jan; 356(2 Pt A):156-64. PubMed ID: 24732809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding Warburg's hypothesis: tumor-related mutations in the mitochondrial respiratory chain.
    Garcia-Heredia JM; Carnero A
    Oncotarget; 2015 Dec; 6(39):41582-99. PubMed ID: 26462158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor cell death induced by the inhibition of mitochondrial electron transport: the effect of 3-hydroxybakuchiol.
    JaƱa F; Faini F; Lapier M; Pavani M; Kemmerling U; Morello A; Maya JD; Jara J; Parra E; Ferreira J
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):356-64. PubMed ID: 23777606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ROS and energy metabolism in cancer cells: alliance for fast growth.
    Kang SW; Lee S; Lee EK
    Arch Pharm Res; 2015 Mar; 38(3):338-45. PubMed ID: 25599615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer: Mitochondrial Origins.
    Stefano GB; Kream RM
    Med Sci Monit; 2015 Dec; 21():3736-9. PubMed ID: 26621573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging.
    Wei YH; Wu SB; Ma YS; Lee HC
    Chang Gung Med J; 2009; 32(2):113-32. PubMed ID: 19403001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mitochondrial genome in human adaptive radiation and disease: on the road to therapeutics and performance enhancement.
    Wallace DC
    Gene; 2005 Jul; 354():169-80. PubMed ID: 16024186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial mutations in cancer.
    Brandon M; Baldi P; Wallace DC
    Oncogene; 2006 Aug; 25(34):4647-62. PubMed ID: 16892079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introduction to the molecular basis of cancer metabolism and the Warburg effect.
    Ngo DC; Ververis K; Tortorella SM; Karagiannis TC
    Mol Biol Rep; 2015 Apr; 42(4):819-23. PubMed ID: 25672512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer.
    Verschoor ML; Wilson LA; Singh G
    Can J Physiol Pharmacol; 2010 Mar; 88(3):204-19. PubMed ID: 20393586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Warburg, me and Hexokinase 2: Multiple discoveries of key molecular events underlying one of cancers' most common phenotypes, the "Warburg Effect", i.e., elevated glycolysis in the presence of oxygen.
    Pedersen PL
    J Bioenerg Biomembr; 2007 Jun; 39(3):211-22. PubMed ID: 17879147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila simulans as a novel model for studying mitochondrial metabolism and aging.
    Ballard JW
    Exp Gerontol; 2005 Oct; 40(10):763-73. PubMed ID: 16169180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial medicine--molecular pathology of defective oxidative phosphorylation.
    Fosslien E
    Ann Clin Lab Sci; 2001 Jan; 31(1):25-67. PubMed ID: 11314862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An inverse-Warburg effect and the origin of Alzheimer's disease.
    Demetrius LA; Simon DK
    Biogerontology; 2012 Dec; 13(6):583-94. PubMed ID: 23086530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Warburg effect increases steady-state ROS condition in cancer cells through decreasing their antioxidant capacities (anticancer effects of 3-bromopyruvate through antagonizing Warburg effect).
    El Sayed SM; Mahmoud AA; El Sawy SA; Abdelaal EA; Fouad AM; Yousif RS; Hashim MS; Hemdan SB; Kadry ZM; Abdelmoaty MA; Gabr AG; Omran FM; Nabo MM; Ahmed NS
    Med Hypotheses; 2013 Nov; 81(5):866-70. PubMed ID: 24071366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondria and Cancer.
    Zong WX; Rabinowitz JD; White E
    Mol Cell; 2016 Mar; 61(5):667-676. PubMed ID: 26942671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.