These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 16870169)

  • 1. The metabolism and molecular toxicology of chloroprene.
    Munter T; Cottrell L; Ghai R; Golding BT; Watson WP
    Chem Biol Interact; 2007 Mar; 166(1-3):323-31. PubMed ID: 16870169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detoxication pathways involving glutathione and epoxide hydrolase in the in vitro metabolism of chloroprene.
    Munter T; Cottrell L; Golding BT; Watson WP
    Chem Res Toxicol; 2003 Oct; 16(10):1287-97. PubMed ID: 14565770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic modeling of beta-chloroprene metabolism: I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans.
    Himmelstein MW; Carpenter SC; Hinderliter PM
    Toxicol Sci; 2004 May; 79(1):18-27. PubMed ID: 14976339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of adducts derived from reactions of (1-chloroethenyl)oxirane with nucleosides and calf thymus DNA.
    Munter T; Cottrell L; Hill S; Kronberg L; Watson WP; Golding BT
    Chem Res Toxicol; 2002 Dec; 15(12):1549-60. PubMed ID: 12482237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro metabolism of chloroprene: species differences, epoxide stereochemistry and a de-chlorination pathway.
    Cottrell L; Golding BT; Munter T; Watson WP
    Chem Res Toxicol; 2001 Nov; 14(11):1552-62. PubMed ID: 11712914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of (1-chloroethenyl)oxirane headspace and hemoglobin N-valine adducts in erythrocytes indicate selective detoxification of (1-chloroethenyl)oxirane enantiomers.
    Hurst HE; Ali MY
    Chem Biol Interact; 2007 Mar; 166(1-3):332-40. PubMed ID: 16750522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The metabolism of beta-chloroprene: preliminary in-vitro studies using liver microsomes.
    Himmelstein MW; Carpenter SC; Hinderliter PM; Snow TA; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():267-84. PubMed ID: 11397396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism and bioactivation of 3-methylindole by human liver microsomes.
    Yan Z; Easterwood LM; Maher N; Torres R; Huebert N; Yost GS
    Chem Res Toxicol; 2007 Jan; 20(1):140-8. PubMed ID: 17226936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicology of 1,3-butadiene, chloroprene, and isoprene.
    Hurst HE
    Rev Environ Contam Toxicol; 2007; 189():131-79. PubMed ID: 17193739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung, and ovary.
    Keller DA; Carpenter SC; Cagen SZ; Reitman FA
    Toxicol Appl Pharmacol; 1997 May; 144(1):36-44. PubMed ID: 9169067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein-reactive metabolites of carbamazepine in mouse liver microsomes.
    Lillibridge JH; Amore BM; Slattery JT; Kalhorn TF; Nelson SD; Finnell RH; Bennett GD
    Drug Metab Dispos; 1996 May; 24(5):509-14. PubMed ID: 8723729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human liver microsomal reduction of pyrrolizidine alkaloid N-oxides to form the corresponding carcinogenic parent alkaloid.
    Wang YP; Yan J; Fu PP; Chou MW
    Toxicol Lett; 2005 Mar; 155(3):411-20. PubMed ID: 15649625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro genotoxicity testing of (1-chloroethenyl)oxirane, a metabolite of beta-chloroprene.
    Himmelstein MW; Gladnick NL; Donner EM; Snyder RD; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():703-13. PubMed ID: 11397425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemical and kinetic comparisons of mono- and diepoxide formation in the in vitro metabolism of isoprene by liver microsomes from rats, mice, and humans.
    Golding BT; Cottrell L; Mackay D; Zhang D; Watson WP
    Chem Res Toxicol; 2003 Jul; 16(7):933-44. PubMed ID: 12870896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research strategy for assessing target tissue dosimetry of 1,3-butadiene in laboratory animals and humans.
    Bond JA; Csanády GA; Leavens T; Medinsky MA
    IARC Sci Publ; 1993; (127):45-55. PubMed ID: 8070886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detoxication of the 2',3'-epoxide metabolites of allylbenzene and estragole. Conjugation with glutathione.
    Luo G; Guenthner TM
    Drug Metab Dispos; 1994; 22(5):731-7. PubMed ID: 7835225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic activation of retronecine and retronecine N-oxide - formation of DHP-derived DNA adducts.
    Yan J; Xia Q; Chou MW; Fu PP
    Toxicol Ind Health; 2008 Apr; 24(3):181-8. PubMed ID: 18842697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroprene: overview of studies under consideration for the development of an IRIS assessment.
    Pagan I
    Chem Biol Interact; 2007 Mar; 166(1-3):341-51. PubMed ID: 17234169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human liver microsomal metabolism and DNA adduct formation of the tumorigenic pyrrolizidine alkaloid, riddelliine.
    Xia Q; Chou MW; Kadlubar FF; Chan PC; Fu PP
    Chem Res Toxicol; 2003 Jan; 16(1):66-73. PubMed ID: 12693032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological toxicokinetic model for exogenous and endogenous ethylene and ethylene oxide in rat, mouse, and human: formation of 2-hydroxyethyl adducts with hemoglobin and DNA.
    Csanády GA; Denk B; Pütz C; Kreuzer PE; Kessler W; Baur C; Gargas ML; Filser JG
    Toxicol Appl Pharmacol; 2000 May; 165(1):1-26. PubMed ID: 10814549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.