These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 16870228)

  • 1. Cyanide phytoremediation by water hyacinths (Eichhornia crassipes).
    Ebel M; Evangelou MW; Schaeffer A
    Chemosphere; 2007 Jan; 66(5):816-23. PubMed ID: 16870228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands.
    Jayaweera MW; Kasturiarachchi JC; Kularatne RK; Wijeyekoon SL
    J Environ Manage; 2008 May; 87(3):450-60. PubMed ID: 17383797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water.
    Xia H; Ma X
    Bioresour Technol; 2006 May; 97(8):1050-4. PubMed ID: 15982870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of Chlorpyrifos by Water Hyacinth (Eichhornia crassipes) and the Role of a Plant-Associated Bacterium.
    Anudechakul C; Vangnai AS; Ariyakanon N
    Int J Phytoremediation; 2015; 17(7):678-85. PubMed ID: 25976881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of chromium and zinc from aqueous solutions using water hyacinth (Eichhornia crassipes).
    Mishra VK; Tripathi BD
    J Hazard Mater; 2009 May; 164(2-3):1059-63. PubMed ID: 18938031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):254-9. PubMed ID: 17064775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal and physiological influence of the absorption of nutrients and toxic elements by Eichhornia crassipes.
    Martins DF; de Fátima Vitória de Moura M; Bezerra Loiola MI; Di Souza L; Barbosa E Silva KM; Francismar de Medeiros J
    J Environ Monit; 2011 Feb; 13(2):274-9. PubMed ID: 21165485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria.
    Nesterenko-Malkovskaya A; Kirzhner F; Zimmels Y; Armon R
    Chemosphere; 2012 Jun; 87(10):1186-91. PubMed ID: 22365276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes).
    Chattopadhyay S; Fimmen RL; Yates BJ; Lal V; Randall P
    Int J Phytoremediation; 2012 Feb; 14(2):142-61. PubMed ID: 22567701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of Eichornia crassipes in metal-contaminated coastal water.
    Agunbiade FO; Olu-Owolabi BI; Adebowale KO
    Bioresour Technol; 2009 Oct; 100(19):4521-6. PubMed ID: 19414252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt.
    Ghabbour EA; Davies G; Lam YY; Vozzella ME
    Environ Pollut; 2004 Oct; 131(3):445-51. PubMed ID: 15261408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial enhancement of Cu2+ removal capacity of Eichhornia crassipes (Mart.).
    So LM; Chu LM; Wong PK
    Chemosphere; 2003 Sep; 52(9):1499-503. PubMed ID: 12867181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the high molecular weight Cd-binding complex in water hyacinth (Eichhornia crassipes) when exposed to Cd.
    Wu JS; Ho TC; Chien HC; Wu YJ; Lin SM; Juang RH
    J Agric Food Chem; 2008 Jul; 56(14):5806-12. PubMed ID: 18582084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes.
    Mishra VK; Upadhyaya AR; Pandey SK; Tripathi BD
    Bioresour Technol; 2008 Mar; 99(5):930-6. PubMed ID: 17475484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor).
    Alvarado S; Guédez M; Lué-Merú MP; Nelson G; Alvaro A; Jesús AC; Gyula Z
    Bioresour Technol; 2008 Nov; 99(17):8436-40. PubMed ID: 18442903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of cyanide by woody plants.
    Larsen M; Trapp S; Pirandello A
    Chemosphere; 2004 Jan; 54(3):325-33. PubMed ID: 14575745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic studies on sorption of basic dye using Eichhornia crassipes.
    Renganathan S; Venkatakrishnan R; Venkataramana S; Kumar MD; Deepak S; Miranda LR; Velan M
    J Environ Sci Eng; 2008 Oct; 50(4):249-54. PubMed ID: 19697758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity and bioaccumulation potential of Cr (VI) and Hg (II) on differential concentration by Eichhornia crassipes in hydroponic culture.
    Giri AK; Patel RK
    Water Sci Technol; 2011; 63(5):899-907. PubMed ID: 21411939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Lantana camara leaf extract on the activity of superoxide dismutase and accumulation of H2O2 in water hyacinth leaf.
    Zheng HQ; Wei N; Wang LF; He P
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):189-94. PubMed ID: 16622318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different compensatory mechanisms in two metal-accumulating aquatic macrophytes exposed to acute cadmium stress in outdoor artificial lakes.
    Sanità di Toppi L; Vurro E; Rossi L; Marabottini R; Musetti R; Careri M; Maffini M; Mucchino C; Corradini C; Badiani M
    Chemosphere; 2007 Jun; 68(4):769-80. PubMed ID: 17292445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.