BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16870259)

  • 1. Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models.
    Sun F; Anantharam V; Zhang D; Latchoumycandane C; Kanthasamy A; Kanthasamy AG
    Neurotoxicology; 2006 Sep; 27(5):807-15. PubMed ID: 16870259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nigral degeneration with inclusion body formation and behavioral changes in rats after proteasomal inhibition.
    Niu C; Mei J; Pan Q; Fu X
    Stereotact Funct Neurosurg; 2009; 87(2):69-81. PubMed ID: 19223692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells.
    Xiong R; Siegel D; Ross D
    Chem Biol Interact; 2013 Jul; 204(2):116-24. PubMed ID: 23684743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repetitive transcranial magnetic stimulation for treatment of lactacystin-induced Parkinsonian rat model.
    Ba M; Ma G; Ren C; Sun X; Kong M
    Oncotarget; 2017 Aug; 8(31):50921-50929. PubMed ID: 28881616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-vitro Approaches to Investigate the Detrimental Effect of Light on Dopaminergic Neurons.
    Fasciani I; Petragnano F; Bono F; Aloisi G; Mutti V; Pardini C; Carli M; Scarselli M; Vaglini F; Angelucci A; Fiorentini C; Lozzi L; Missale C; Maggio R; Rossi M
    Neuroscience; 2024 Apr; 544():104-116. PubMed ID: 38244669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression.
    Kim D; Kim SH; Li GC
    Biochem Biophys Res Commun; 1999 Jan; 254(1):264-8. PubMed ID: 9920768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuropathogenesis-on-chips for neurodegenerative diseases.
    Amartumur S; Nguyen H; Huynh T; Kim TS; Woo RS; Oh E; Kim KK; Lee LP; Heo C
    Nat Commun; 2024 Mar; 15(1):2219. PubMed ID: 38472255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the Parkinson's puzzle, from medications and surgery to stem cells and genes: a comprehensive review of current and future management strategies.
    Chandrababu K; Radhakrishnan V; Anjana AS; Rajan R; Sivan U; Krishnan S; Baby Chakrapani PS
    Exp Brain Res; 2024 Jan; 242(1):1-23. PubMed ID: 38015243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the bacterial metabolite aerugine as potential trigger of human dopaminergic neurodegeneration.
    Ückert AK; Rütschlin S; Gutbier S; Wörz NC; Miah MR; Martins AC; Hauer I; Holzer AK; Meyburg B; Mix AK; Hauck C; Aschner M; Böttcher T; Leist M
    Environ Int; 2023 Oct; 180():108229. PubMed ID: 37797477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebrospinal Fluid Metabolome in Parkinson's Disease and Multiple System Atrophy.
    Kwon DH; Hwang JS; Kim SG; Jang YE; Shin TH; Lee G
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Cholesterol in Stress-Related Neuronal Death-A Statistical Analysis Perspective.
    Dayeh MA; Livadiotis G; Aminian F; Cheng KH; Roberts JL; Viswasam N; Elaydi S
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotoxicity of pesticides.
    Richardson JR; Fitsanakis V; Westerink RHS; Kanthasamy AG
    Acta Neuropathol; 2019 Sep; 138(3):343-362. PubMed ID: 31197504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hapln2 in Neurological Diseases and Its Potential as Therapeutic Target.
    Wang Q; Wang C; Ji B; Zhou J; Yang C; Chen J
    Front Aging Neurosci; 2019; 11():60. PubMed ID: 30949044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic Interplay Between Autophagy and Apoptotic Signaling in Endosulfan-Induced Dopaminergic Neurotoxicity: Relevance to the Adverse Outcome Pathway in Pesticide Neurotoxicity.
    Song C; Charli A; Luo J; Riaz Z; Jin H; Anantharam V; Kanthasamy A; Kanthasamy AG
    Toxicol Sci; 2019 Jun; 169(2):333-352. PubMed ID: 30796443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs.
    Lillethorup TP; Glud AN; Alstrup AKO; Noer O; Nielsen EHT; Schacht AC; Landeck N; Kirik D; Orlowski D; Sørensen JCH; Doudet DJ; Landau AM
    Sci Rep; 2018 Oct; 8(1):15715. PubMed ID: 30356172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parkinson's disease: experimental models and reality.
    Jiang P; Dickson DW
    Acta Neuropathol; 2018 Jan; 135(1):13-32. PubMed ID: 29151169
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Gleixner AM; Hutchison DF; Sannino S; Bhatia TN; Leak LC; Flaherty PT; Wipf P; Brodsky JL; Leak RK
    Mol Pharmacol; 2017 Nov; 92(5):564-575. PubMed ID: 28830914
    [No Abstract]   [Full Text] [Related]  

  • 18. The Proteasome Inhibition Model of Parkinson's Disease.
    Bentea E; Verbruggen L; Massie A
    J Parkinsons Dis; 2017; 7(1):31-63. PubMed ID: 27802243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease.
    Wang Q; Zhou Q; Zhang S; Shao W; Yin Y; Li Y; Hou J; Zhang X; Guo Y; Wang X; Gu X; Zhou J
    Front Aging Neurosci; 2016; 8():197. PubMed ID: 27601993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apigenin Reduces Proteasome Inhibition-Induced Neuronal Apoptosis by Suppressing the Cell Death Process.
    Kim A; Nam YJ; Lee MS; Shin YK; Sohn DS; Lee CS
    Neurochem Res; 2016 Nov; 41(11):2969-2980. PubMed ID: 27473386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.