These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 16870505)

  • 1. Atomic tritium as an instrument for study of protein behavior at the air-water interface.
    Lukashina EV; Badun GA; Chulichkov AL
    Biomol Eng; 2007 Feb; 24(1):125-9. PubMed ID: 16870505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the air-water interface on the structure of lysozyme in the presence of guanidinium chloride.
    Perriman AW; Henderson MJ; Evenhuis CR; McGillivray DJ; White JW
    J Phys Chem B; 2008 Aug; 112(31):9532-9. PubMed ID: 18616315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of interfacial films formed by lysozyme self-assembly at the air-water interface.
    Malcolm AS; Dexter AF; Middelberg AP
    Langmuir; 2006 Oct; 22(21):8897-905. PubMed ID: 17014133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic-embedded protein crystals.
    Ravelli RB; Haselmann-Weiss U; McGeehan JE; McCarthy AA; Marquez JA; Antony C; Frangakis AS; Stranzl G
    J Synchrotron Radiat; 2007 Jan; 14(Pt 1):128-32. PubMed ID: 17211079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.
    Mallamace F; Chen SH; Broccio M; Corsaro C; Crupi V; Majolino D; Venuti V; Baglioni P; Fratini E; Vannucci C; Stanley HE
    J Chem Phys; 2007 Jul; 127(4):045104. PubMed ID: 17672727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The adsorbed conformation of globular proteins at the air/water interface.
    Lad MD; Birembaut F; Matthew JM; Frazier RA; Green RJ
    Phys Chem Chem Phys; 2006 May; 8(18):2179-86. PubMed ID: 16751876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bond dynamics in the air-water interface.
    Liu P; Harder E; Berne BJ
    J Phys Chem B; 2005 Feb; 109(7):2949-55. PubMed ID: 16851308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Driving force behind adsorption-induced protein unfolding: a time-resolved X-ray reflectivity study on lysozyme adsorbed at an air/water interface.
    Yano YF; Uruga T; Tanida H; Toyokawa H; Terada Y; Takagaki M; Yamada H
    Langmuir; 2009 Jan; 25(1):32-5. PubMed ID: 19072146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations for water and ions in protein crystals.
    Hu Z; Jiang J
    Langmuir; 2008 Apr; 24(8):4215-23. PubMed ID: 18318554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin of repulsive force and structure/dynamics of interfacial water in OEG-protein interactions: a molecular simulation study.
    He Y; Chang Y; Hower JC; Zheng J; Chen S; Jiang S
    Phys Chem Chem Phys; 2008 Sep; 10(36):5539-44. PubMed ID: 18956088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations.
    Hu Z; Jiang J; Sandler SI
    J Chem Phys; 2008 Aug; 129(7):075105. PubMed ID: 19044806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein resistance of (ethylene oxide)n monolayers at the air/water interface: effects of packing density and chain length.
    Liu G; Chen Y; Zhang G; Yang S
    Phys Chem Chem Phys; 2007 Dec; 9(46):6073-82. PubMed ID: 18167582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid scintillation spectrometry of tritium in studying lysozyme behavior in aqueous/organic liquid systems. The influence of the organic phase.
    Chernysheva MG; Badun GA
    Langmuir; 2011 Mar; 27(6):2188-94. PubMed ID: 21309602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equilibrium of adsorption of mixed milk protein/surfactant solutions at the water/air interface.
    Kotsmar C; Grigoriev DO; Xu F; Aksenenko EV; Fainerman VB; Leser ME; Miller R
    Langmuir; 2008 Dec; 24(24):13977-84. PubMed ID: 19053640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular simulation study of methylated and hydroxyl sugar-based self-assembled monolayers: Surface hydration and resistance to protein adsorption.
    Hower JC; He Y; Jiang S
    J Chem Phys; 2008 Dec; 129(21):215101. PubMed ID: 19063581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of surface active soluble peptide molecules at the air/water interface.
    Gu C; Lustig S; Jackson C; Trout BL
    J Phys Chem B; 2008 Mar; 112(10):2970-80. PubMed ID: 18271570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the solution-air interface of aqueous sodium nitrate.
    Thomas JL; Roeselová M; Dang LX; Tobias DJ
    J Phys Chem A; 2007 Apr; 111(16):3091-8. PubMed ID: 17402716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular features of the air/carbonate solution interface.
    Du H; Liu J; Ozdemir O; Nguyen AV; Miller JD
    J Colloid Interface Sci; 2008 Feb; 318(2):271-7. PubMed ID: 18035369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural changes in confined lysozyme.
    Reátegui E; Aksan A
    J Biomech Eng; 2009 Jul; 131(7):074520. PubMed ID: 19640156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the nonfouling mechanism of surfaces through molecular simulations of sugar-based self-assembled monolayers.
    Hower JC; He Y; Bernards MT; Jiang S
    J Chem Phys; 2006 Dec; 125(21):214704. PubMed ID: 17166037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.