BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16871001)

  • 1. Modeling a viscoelastic gymnastics landing mat during impact.
    Mills C; Pain MT; Yeadon MR
    J Appl Biomech; 2006 May; 22(2):103-11. PubMed ID: 16871001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.
    Mills C; Yeadon MR; Pain MT
    Sports Biomech; 2010 Sep; 9(3):153-64. PubMed ID: 21162361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Video analysis of the deformation and effective mass of gymnastics landing mats.
    Pain MT; Mills CL; Yeadon MR
    Med Sci Sports Exerc; 2005 Oct; 37(10):1754-60. PubMed ID: 16260977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of landing mat composition on ankle injury risk during a gymnastic landing: a biomechanical quantification.
    Xiao X; Hao W; Li X; Wan B; Shan G
    Acta Bioeng Biomech; 2017; 19(1):105-113. PubMed ID: 28552921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mat characteristics on plantar pressure patterns and perceived mat properties during landing in gymnastics.
    Pérez-Soriano P; Llana-Belloch S; Morey-Klapsing G; Perez-Turpin JA; Cortell-Tormo JM; van den Tillaar R
    Sports Biomech; 2010 Nov; 9(4):245-57. PubMed ID: 21309299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional shank-foot model to determine the foot motion during landings.
    Arampatzis A; Brüggemann GP; Klapsing GM
    Med Sci Sports Exerc; 2002 Jan; 34(1):130-8. PubMed ID: 11782658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of simulation model complexity on the estimation of internal loading in gymnastics landings.
    Mills C; Pain MT; Yeadon MR
    J Biomech; 2008; 41(3):620-8. PubMed ID: 18005975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthotic effect of a stabilising mechanism in the surface of gymnastic mats on foot motion during landings.
    Arampatzis A; Morey-Klapsing G; Brüggemann GP
    J Electromyogr Kinesiol; 2005 Oct; 15(5):507-15. PubMed ID: 15935962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing ground reaction forces in gymnastics' landings may increase internal loading.
    Mills C; Pain MT; Yeadon MR
    J Biomech; 2009 Apr; 42(6):671-8. PubMed ID: 19281989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fatigue effects on the viscoelastic behavior of men and women in a landing task: a Mass-Spring-Damper modeling approach.
    Boozari S; Sanjari MA; Amiri A; Ebrahimi Takamjani I
    Comput Methods Biomech Biomed Engin; 2020 Aug; 23(10):564-570. PubMed ID: 32551896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach to modeling impact energy absorption by surfaces.
    Davidson PL; Wilson SJ; Wilson BD; Chalmers DJ
    J Appl Biomech; 2009 Nov; 25(4):351-9. PubMed ID: 20095456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical high bar-human body model for analysing and interpreting mechanical-energetic processes on the high bar.
    Arampatzis A; Brüggemann GP
    J Biomech; 1998 Dec; 31(12):1083-92. PubMed ID: 9882040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Greater lower limb flexion in gymnastic landings is associated with reduced landing force: a repeated measures study.
    Slater A; Campbell A; Smith A; Straker L
    Sports Biomech; 2015 Mar; 14(1):45-56. PubMed ID: 25895434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consistency of performances in the Tkatchev release and re-grasp on high bar.
    Hiley MJ; Yeadon MR; Buxton E
    Sports Biomech; 2007 May; 6(2):121-30. PubMed ID: 17892090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings.
    Gittoes MJ; Brewin MA; Kerwin DG
    Hum Mov Sci; 2006 Dec; 25(6):775-87. PubMed ID: 16879889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a subject-specific female gymnast model and simulation of an uneven parallel bar swing.
    Sheets AL; Hubbard M
    J Biomech; 2008 Nov; 41(15):3139-44. PubMed ID: 18930233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks?
    Simons C; Bradshaw EJ
    Sports Biomech; 2016; 15(1):76-88. PubMed ID: 26873303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal kicking of a trampolinist.
    Chen J; Guo H; Gao Z; An M; Wang X; Chen W
    Hum Mov Sci; 2016 Aug; 48():54-61. PubMed ID: 27132153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Somersaulting techniques used in high-scoring and low-scoring Roche vaults performed by male Olympic gymnasts.
    Takei Y; Dunn JH; Blucker EP
    J Sports Sci; 2007 Apr; 25(6):673-85. PubMed ID: 17454535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental and analytical study of impact forces during human jumping.
    Ozgüven HN; Berme N
    J Biomech; 1988; 21(12):1061-6. PubMed ID: 2577952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.