These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 16871208)

  • 21. Microfluidic technology for cell biology-related applications: a review.
    Mukherjee J; Chaturvedi D; Mishra S; Jain R; Dandekar P
    J Biol Phys; 2024 Mar; 50(1):1-27. PubMed ID: 38055086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosensing and monitoring of cell populations using the hydrogel bacterial microchip.
    Fesenko DO; Nasedkina TV; Prokopenko DV; Mirzabekov AD
    Biosens Bioelectron; 2005 Mar; 20(9):1860-5. PubMed ID: 15681206
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technique for the control of spheroid diameter using microfabricated chips.
    Sakai Y; Nakazawa K
    Acta Biomater; 2007 Nov; 3(6):1033-40. PubMed ID: 17689307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Fabrication and application of a novel cell culture microchip].
    Shao J; Wu L; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2008 Jul; 24(7):1253-7. PubMed ID: 18837404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noninvasive measurement of effective diffusivities in cell immobilization gels through use of near-infrared spectroscopy.
    Frazier BL; Larmour P; Riley MR
    Biotechnol Bioeng; 2001 Feb; 72(3):364-8. PubMed ID: 11135207
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protocol for the fabrication of enzymatically crosslinked gelatin microchannels for microfluidic cell culture.
    Paguirigan AL; Beebe DJ
    Nat Protoc; 2007; 2(7):1782-8. PubMed ID: 17641645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recreating the hematon: microfabrication of artificial haematopoietic stem cell microniches in vitro using dielectrophoresis.
    Markx GH; Carney L; Littlefair M; Sebastian A; Buckle AM
    Biomed Microdevices; 2009 Feb; 11(1):143-50. PubMed ID: 18770040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simplifying the extracellular matrix for 3-D cell culture and tissue engineering: a pragmatic approach.
    Prestwich GD
    J Cell Biochem; 2007 Aug; 101(6):1370-83. PubMed ID: 17492655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A lab-on-a-chip for spectrophotometric analysis of biological fluids.
    Minas G; Wolffenbuttel RF; Correia JH
    Lab Chip; 2005 Nov; 5(11):1303-9. PubMed ID: 16234956
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic gradient platforms for controlling cellular behavior.
    Chung BG; Choo J
    Electrophoresis; 2010 Sep; 31(18):3014-27. PubMed ID: 20734372
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multicellular spheroid array to realize spheroid formation, culture, and viability assay on a chip.
    Torisawa YS; Takagi A; Nashimoto Y; Yasukawa T; Shiku H; Matsue T
    Biomaterials; 2007 Jan; 28(3):559-66. PubMed ID: 16989897
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New trends in non-invasive prenatal diagnosis: applications of dielectrophoresis-based Lab-on-a-chip platforms to the identification and manipulation of rare cells.
    Borgatti M; Bianchi N; Mancini I; Feriotto G; Gambari R
    Int J Mol Med; 2008 Jan; 21(1):3-12. PubMed ID: 18097610
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional culture for monoclonal antibody production by hybridoma cells immobilized in macroporous gel particles.
    Nilsang S; Nehru V; Plieva FM; Nandakumar KS; Rakshit SK; Holmdahl R; Mattiasson B; Kumar A
    Biotechnol Prog; 2008; 24(5):1122-31. PubMed ID: 19194922
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaling and the design of miniaturized chemical-analysis systems.
    Janasek D; Franzke J; Manz A
    Nature; 2006 Jul; 442(7101):374-80. PubMed ID: 16871204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fabrication of a modular tissue construct in a microfluidic chip.
    Bruzewicz DA; McGuigan AP; Whitesides GM
    Lab Chip; 2008 May; 8(5):663-71. PubMed ID: 18432334
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrating polyurethane culture substrates into poly(dimethylsiloxane) microdevices.
    Moraes C; Kagoma YK; Beca BM; Tonelli-Zasarsky RL; Sun Y; Simmons CA
    Biomaterials; 2009 Oct; 30(28):5241-50. PubMed ID: 19545891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic cell culture platform for real-time cellular imaging.
    Hsieh CC; Huang SB; Wu PC; Shieh DB; Lee GB
    Biomed Microdevices; 2009 Aug; 11(4):903-13. PubMed ID: 19370417
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy.
    Tachi T; Kaji N; Tokeshi M; Baba Y
    Lab Chip; 2009 Apr; 9(7):966-71. PubMed ID: 19294309
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of pulmonary cell growth parameters in a continuous perfusion microfluidic environment.
    Nalayanda DD; Puleo CM; Fulton WB; Wang TH; Abdullah F
    Exp Lung Res; 2007 Aug; 33(6):321-35. PubMed ID: 17694441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.