These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Clinical doses of atomoxetine significantly occupy both norepinephrine and serotonin transports: Implications on treatment of depression and ADHD. Ding YS; Naganawa M; Gallezot JD; Nabulsi N; Lin SF; Ropchan J; Weinzimmer D; McCarthy TJ; Carson RE; Huang Y; Laruelle M Neuroimage; 2014 Feb; 86():164-71. PubMed ID: 23933039 [TBL] [Abstract][Full Text] [Related]
3. A haplotype of the norepinephrine transporter (Net) gene Slc6a2 is associated with clinical response to atomoxetine in attention-deficit hyperactivity disorder (ADHD). Ramoz N; Boni C; Downing AM; Close SL; Peters SL; Prokop AM; Allen AJ; Hamon M; Purper-Ouakil D; Gorwood P Neuropsychopharmacology; 2009 Aug; 34(9):2135-42. PubMed ID: 19387424 [TBL] [Abstract][Full Text] [Related]
4. Biaryl analogues of conformationally constrained tricyclic tropanes as potent and selective norepinephrine reuptake inhibitors: synthesis and evaluation of their uptake inhibition at monoamine transporter sites. Zhou J; Zhang A; Kläss T; Johnson KM; Wang CZ; Ye YP; Kozikowski AP J Med Chem; 2003 May; 46(10):1997-2007. PubMed ID: 12723962 [TBL] [Abstract][Full Text] [Related]
5. Discovery of novel conformationally constrained tropane-based biaryl and arylacetylene ligands as potent and selective norepinephrine transporter inhibitors and potential antidepressants. Zhou J; Kläss T; Johnson KM; Giberson KM; Kozikowski AP Bioorg Med Chem Lett; 2005 May; 15(10):2461-5. PubMed ID: 15863297 [TBL] [Abstract][Full Text] [Related]
6. Novel conformationally constrained tropane analogues by 6-endo-trig radical cyclization and stille coupling - switch of activity toward the serotonin and/or norepinephrine transporter. Hoepping A; Johnson KM; George C; Flippen-Anderson J; Kozikowski AP J Med Chem; 2000 May; 43(10):2064-71. PubMed ID: 10821718 [TBL] [Abstract][Full Text] [Related]
7. Involvement of norepinephrine in the control of activity and attentive processes in animal models of attention deficit hyperactivity disorder. Viggiano D; Ruocco LA; Arcieri S; Sadile AG Neural Plast; 2004; 11(1-2):133-49. PubMed ID: 15303310 [TBL] [Abstract][Full Text] [Related]
8. Effect of methylphenidate treatment during adolescence on norepinephrine transporter function in orbitofrontal cortex in a rat model of attention deficit hyperactivity disorder. Somkuwar SS; Kantak KM; Dwoskin LP J Neurosci Methods; 2015 Aug; 252():55-63. PubMed ID: 25680322 [TBL] [Abstract][Full Text] [Related]
9. Atomoxetine occupies the norepinephrine transporter in a dose-dependent fashion: a PET study in nonhuman primate brain using (S,S)-[18F]FMeNER-D2. Seneca N; Gulyás B; Varrone A; Schou M; Airaksinen A; Tauscher J; Vandenhende F; Kielbasa W; Farde L; Innis RB; Halldin C Psychopharmacology (Berl); 2006 Sep; 188(1):119-27. PubMed ID: 16896954 [TBL] [Abstract][Full Text] [Related]
10. Functional gene variation in the human norepinephrine transporter: association with attention deficit hyperactivity disorder. Kim CH; Waldman ID; Blakely RD; Kim KS Ann N Y Acad Sci; 2008; 1129():256-60. PubMed ID: 18591486 [TBL] [Abstract][Full Text] [Related]
11. PET imaging of norepinephrine transporters. Ding YS; Lin KS; Logan J Curr Pharm Des; 2006; 12(30):3831-45. PubMed ID: 17073682 [TBL] [Abstract][Full Text] [Related]
12. Differential Genetic Effect of the Norepinephrine Transporter Promoter Polymorphisms on Attention Problems in Clinical and Non-clinical Samples. Nemoda Z; Angyal N; Tarnok Z; Birkas E; Bognar E; Sasvari-Szekely M; Gervai J; Lakatos K Front Neurosci; 2018; 12():1051. PubMed ID: 30692908 [TBL] [Abstract][Full Text] [Related]
13. Effects of norepinephrine transporter gene variants on NET binding in ADHD and healthy controls investigated by PET. Sigurdardottir HL; Kranz GS; Rami-Mark C; James GM; Vanicek T; Gryglewski G; Kautzky A; Hienert M; Traub-Weidinger T; Mitterhauser M; Wadsak W; Hacker M; Rujescu D; Kasper S; Lanzenberger R Hum Brain Mapp; 2016 Mar; 37(3):884-95. PubMed ID: 26678348 [TBL] [Abstract][Full Text] [Related]
14. Effects of selective serotonin and norepinephrine reuptake inhibitors on depressive- and impulsive-like behaviors and on monoamine transmission in experimental temporal lobe epilepsy. Kumar U; Medel-Matus JS; Redwine HM; Shin D; Hensler JG; Sankar R; Mazarati A Epilepsia; 2016 Mar; 57(3):506-15. PubMed ID: 26813337 [TBL] [Abstract][Full Text] [Related]
15. Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Logan J; Wang GJ; Telang F; Fowler JS; Alexoff D; Zabroski J; Jayne M; Hubbard B; King P; Carter P; Shea C; Xu Y; Muench L; Schlyer D; Learned-Coughlin S; Cosson V; Volkow ND; Ding YS Nucl Med Biol; 2007 Aug; 34(6):667-79. PubMed ID: 17707807 [TBL] [Abstract][Full Text] [Related]
16. Age-related changes in prefrontal norepinephrine transporter density: The basis for improved cognitive flexibility after low doses of atomoxetine in adolescent rats. Bradshaw SE; Agster KL; Waterhouse BD; McGaughy JA Brain Res; 2016 Jun; 1641(Pt B):245-57. PubMed ID: 26774596 [TBL] [Abstract][Full Text] [Related]
17. Development of new brain imaging agents based upon nocaine-modafinil hybrid monoamine transporter inhibitors. Musachio JL; Hong J; Ichise M; Seneca N; Brown AK; Liow JS; Halldin C; Innis RB; Pike VW; He R; Zhou J; Kozikowski AP Bioorg Med Chem Lett; 2006 Jun; 16(12):3101-4. PubMed ID: 16621532 [TBL] [Abstract][Full Text] [Related]
18. Norepinephrine transporter expression and function in noradrenergic cell differentiation. Sieber-Blum M; Ren Z Mol Cell Biochem; 2000 Sep; 212(1-2):61-70. PubMed ID: 11108137 [TBL] [Abstract][Full Text] [Related]