BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 16871797)

  • 1. [Mechanism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains].
    Grigor'eva NV; Kondrat'eva TF; Krasil'nikova EN; Karavaĭko GI
    Mikrobiologiia; 2006; 75(3):320-8. PubMed ID: 16871797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida.
    Chapatwala KD; Babu GR; Vijaya OK; Kumar KP; Wolfram JH
    J Ind Microbiol Biotechnol; 1998 Jan; 20(1):28-33. PubMed ID: 9523454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-free extract(s) of Pseudomonas putida catalyzes the conversion of cyanides, cyanates, thiocyanates, formamide, and cyanide-containing mine waters into ammonia.
    Babu GR; Vijaya OK; Ross VL; Wolfram JH; Chapatwala KD
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):273-7. PubMed ID: 8920201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Microbial destruction of cyanide and thiocyanate].
    Karavaĭko GI; Kondrat'eva TF; Savari EE; Grigor'eva NV; Avakian ZA
    Mikrobiologiia; 2000; 69(2):209-16. PubMed ID: 10776620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial thiocyanate utilization under highly alkaline conditions.
    Sorokin DY; Tourova TP; Lysenko AM; Kuenen JG
    Appl Environ Microbiol; 2001 Feb; 67(2):528-38. PubMed ID: 11157213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri.
    Singh U; Arora NK; Sachan P
    Braz J Microbiol; 2018; 49(1):38-44. PubMed ID: 28958662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources.
    Wood AP; Kelly DP; McDonald IR; Jordan SL; Morgan TD; Khan S; Murrell JC; Borodina E
    Arch Microbiol; 1998 Feb; 169(2):148-58. PubMed ID: 9446686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an enzyme that is not essential for cyanide assimilation.
    Luque-Almagro VM; Huertas MJ; Sáez LP; Luque-Romero MM; Moreno-Vivián C; Castillo F; Roldán MD; Blasco R
    Appl Environ Microbiol; 2008 Oct; 74(20):6280-8. PubMed ID: 18708510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of soil cyanide by single and mixed cultures of Pseudomonas stutzeri and Bacillus subtilis.
    Nwokoro O; Dibua ME
    Arh Hig Rada Toksikol; 2014 Mar; 65(1):113-9. PubMed ID: 24670334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of microbial cocktails for BTEX biodegradation.
    Nagarajan K; Loh KC
    Biodegradation; 2015 Feb; 26(1):51-63. PubMed ID: 25331771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium
    Sáez LP; Cabello P; Ibáñez MI; Luque-Almagro VM; Roldán MD; Moreno-Vivián C
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31226739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced crude oil biodegradation and rhamnolipid production by Pseudomonas stutzeri strain G11 in the presence of Tween-80 and Triton X-100.
    Celik GY; Aslim B; Beyatli Y
    J Environ Biol; 2008 Nov; 29(6):867-70. PubMed ID: 19297982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium: the degradative pathway involves formation of ammonia and tetrathionate.
    Stratford J; Dias AE; Knowles CJ
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2657-62. PubMed ID: 8000536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detoxifying Cyanides Using Cyanase Enzyme Complexes Composed of Carbonic Anhydrase via Irreversible Covalent Bonds.
    Sun H; Lee Y; Han SO; Hyeon JE
    J Agric Food Chem; 2024 Mar; 72(10):5318-5324. PubMed ID: 38477042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics.
    Kantor RS; van Zyl AW; van Hille RP; Thomas BC; Harrison ST; Banfield JF
    Environ Microbiol; 2015 Dec; 17(12):4929-41. PubMed ID: 26031303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic cyanide degradation by bacterial isolates from cassava factory wastewater.
    Kandasamy S; Dananjeyan B; Krishnamurthy K; Benckiser G
    Braz J Microbiol; 2015; 46(3):659-66. PubMed ID: 26413045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation of an aboriginal bacterial community capable of utilizing cyanide, thiocyanate, and ammonia from metallurgical plant wastewater].
    Grigor'eva NV; Smirnova IuV; Terekhova SV; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2008; 44(5):554-8. PubMed ID: 18822775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approach to optimize operational conditions for the biological treatment of a high-strength thiocyanate and ammonium waste: pH as key factor.
    Lay-Son M; Drakides C
    Water Res; 2008 Feb; 42(3):774-80. PubMed ID: 17888485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A partial exploration of the potential energy surfaces of SCN and HSCN: implications for the enzyme-mediated detoxification of cyanide.
    Zottola MA
    J Mol Graph Model; 2009 Sep; 28(2):183-6. PubMed ID: 19625201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.