BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 16872069)

  • 1. Feasibility of real time dual-energy imaging based on a flat panel detector for coronary artery calcium quantification.
    Xu T; Ducote JL; Wong JT; Molloi S
    Med Phys; 2006 Jun; 33(6):1612-22. PubMed ID: 16872069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of a flat-panel based real time dual-energy system for cardiac imaging.
    Ducote JL; Xu T; Molloi S
    Med Phys; 2006 Jun; 33(6):1562-8. PubMed ID: 16872063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-energy cardiac imaging: an image quality and dose comparison for a flat-panel detector and x-ray image intensifier.
    Ducote JL; Xu T; Molloi S
    Phys Med Biol; 2007 Jan; 52(1):183-96. PubMed ID: 17183135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing dual-energy x-ray parameters for the ExacTrac clinical stereoscopic imaging system to enhance soft-tissue imaging.
    Bowman WA; Robar JL; Sattarivand M
    Med Phys; 2017 Mar; 44(3):823-831. PubMed ID: 28060412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection and quantification of coronary calcium from dual energy chest x-rays: Phantom feasibility study.
    Zhou B; Wen D; Nye K; Gilkeson RC; Eck B; Jordan D; Wilson DL
    Med Phys; 2017 Oct; 44(10):5106-5119. PubMed ID: 28710871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients: Initial experience with 3
    Hagelstein C; Henzler T; Haubenreisser H; Meyer M; Sudarski S; Schoenberg SO; Neff KW; Weis M
    Z Med Phys; 2016 Dec; 26(4):349-361. PubMed ID: 26702762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dose optimization in pediatric cardiac x-ray imaging.
    Gislason AJ; Davies AG; Cowen AR
    Med Phys; 2010 Oct; 37(10):5258-69. PubMed ID: 21089760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of spectral separation: an assessment of dual-energy spectral separation for quantitative ability and dose efficiency.
    Krauss B; Grant KL; Schmidt BT; Flohr TG
    Invest Radiol; 2015 Feb; 50(2):114-8. PubMed ID: 25373305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feasibility of coronary artery calcium scoring on virtual unenhanced images derived from single-source fast kVp-switching dual-energy coronary CT angiography.
    Yamada Y; Jinzaki M; Okamura T; Yamada M; Tanami Y; Abe T; Kuribayashi S
    J Cardiovasc Comput Tomogr; 2014; 8(5):391-400. PubMed ID: 25301045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phantom study to evaluate contrast-medium-enhanced digital subtraction mammography with a full-field indirect-detection system.
    Palma BA; Rosado-Méndez I; Villaseñor Y; Brandan ME
    Med Phys; 2010 Feb; 37(2):577-89. PubMed ID: 20229866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative evaluation of noise reduction strategies in dual-energy imaging.
    Warp RJ; Dobbins JT
    Med Phys; 2003 Feb; 30(2):190-8. PubMed ID: 12607836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of optimum X-ray beam tube voltage and filtration for chest radiography with a computed radiography system.
    Moore CS; Beavis AW; Saunderson JR
    Br J Radiol; 2008 Oct; 81(970):771-7. PubMed ID: 18662964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental assessment of the influence of beam hardening filters on image quality and patient dose in volumetric 64-slice X-ray CT scanners.
    Ay MR; Mehranian A; Maleki A; Ghadiri H; Ghafarian P; Zaidi H
    Phys Med; 2013 May; 29(3):249-60. PubMed ID: 22541061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-energy MDCT in hypervascular liver tumors: effect of body size on selection of the optimal monochromatic energy level.
    Mileto A; Nelson RC; Samei E; Choudhury KR; Jaffe TA; Wilson JM; Marin D
    AJR Am J Roentgenol; 2014 Dec; 203(6):1257-64. PubMed ID: 25415703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose optimization in cardiac x-ray imaging.
    Gislason-Lee AJ; McMillan C; Cowen AR; Davies AG
    Med Phys; 2013 Sep; 40(9):091911. PubMed ID: 24007162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-energy imaging of the chest: optimization of image acquisition techniques for the 'bone-only' image.
    Shkumat NA; Siewerdsen JH; Richard S; Paul NS; Yorkston J; Van Metter R
    Med Phys; 2008 Feb; 35(2):629-32. PubMed ID: 18383684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration.
    Thomas C; Krauss B; Ketelsen D; Tsiflikas I; Reimann A; Werner M; Schilling D; Hennenlotter J; Claussen CD; Schlemmer HP; Heuschmid M
    Invest Radiol; 2010 Jul; 45(7):393-8. PubMed ID: 20440214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detector for dual-energy digital radiography.
    Barnes GT; Sones RA; Tesic MM; Morgan DR; Sanders JN
    Radiology; 1985 Aug; 156(2):537-40. PubMed ID: 4011921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance Evaluation of Material Decomposition With Rapid-Kilovoltage-Switching Dual-Energy CT and Implications for Assessing Bone Mineral Density.
    Wait JM; Cody D; Jones AK; Rong J; Baladandayuthapani V; Kappadath SC
    AJR Am J Roentgenol; 2015 Jun; 204(6):1234-41. PubMed ID: 26001233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grid removal and impact on population dose in full-field digital mammography.
    Gennaro G; Katz L; Souchay H; Klausz R; Alberelli C; di Maggio C
    Med Phys; 2007 Feb; 34(2):547-55. PubMed ID: 17388172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.