BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 16872080)

  • 1. Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for 137Cs, 125I, 192Ir, 103Pd, and 169Yb sources.
    Melhus CS; Rivard MJ
    Med Phys; 2006 Jun; 33(6):1729-37. PubMed ID: 16872080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of radial dose functions for 103Pd, 125I, 145Sm, 241Am, 169Yb, 192Ir, and 137Cs brachytherapy sources.
    Meigooni AS; Nath R
    Int J Radiat Oncol Biol Phys; 1992; 22(5):1125-30. PubMed ID: 1555964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radial dose functions for 103Pd, 125I, 169Yb and 192Ir brachytherapy sources: an EGS4 Monte Carlo study.
    Mainegra E; Capote R; López E
    Phys Med Biol; 2000 Mar; 45(3):703-17. PubMed ID: 10730965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of encapsulated 170Tm sources for their potential use in brachytherapy.
    Ballester F; Granero D; Perez-Calatayud J; Venselaar JL; Rivard MJ
    Med Phys; 2010 Apr; 37(4):1629-37. PubMed ID: 20443484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy assessment of the superposition principle for evaluating dose distributions of elongated and curved 103Pd and 192Ir brachytherapy sources.
    Bannon EA; Yang Y; Rivard MJ
    Med Phys; 2011 Jun; 38(6):2957-63. PubMed ID: 21815369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose rate constants for 125I, 103Pd, 192Ir and 169Yb brachytherapy sources: an EGS4 Monte Carlo study.
    Mainegra E; Capote R; López E
    Phys Med Biol; 1998 Jun; 43(6):1557-66. PubMed ID: 9651025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons.
    Ballester F; Granero D; Pérez-Calatayud J; Melhus CS; Rivard MJ
    Med Phys; 2009 Sep; 36(9):4250-6. PubMed ID: 19810499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.
    Lymperopoulou G; Papagiannis P; Angelopoulos A; Karaiskos P; Georgiou E; Baltas D
    Med Phys; 2006 Dec; 33(12):4583-9. PubMed ID: 17278810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APPLICABILITY OF PURE PROPANE GAS FOR MICRODOSIMETRY AT BRACHYTHERAPY ENERGIES: A FLUKA STUDY.
    Chattaraj A; Selvam TP
    Radiat Prot Dosimetry; 2020 Jul; 189(3):286-293. PubMed ID: 32259843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perturbation of TG-43 parameters of the brachytherapy sources under insufficient scattering materials.
    Zehtabian M; Sina S; Faghihi R; Meigooni A
    J Appl Clin Med Phys; 2013 May; 14(3):4228. PubMed ID: 23652255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EGSnrc Monte Carlo calculated dosimetry parameters for 192Ir and 169Yb brachytherapy sources.
    Taylor RE; Rogers DW
    Med Phys; 2008 Nov; 35(11):4933-44. PubMed ID: 19070227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropy functions for 103Pd, 125I, and 192Ir interstitial brachytherapy sources.
    Nath R; Meigooni AS; Muench P; Melillo A
    Med Phys; 1993; 20(5):1465-73. PubMed ID: 8289730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MONTE CARLO-BASED INVESTIGATION OF MICRODOSIMETRIC DISTRIBUTION OF HIGH ENERGY BRACHYTHERAPY SOURCES.
    Chattaraj A; Selvam TP; Datta D
    Radiat Prot Dosimetry; 2019 Dec; 187(1):115-128. PubMed ID: 31165891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EGSnrc-based Monte Carlo dosimetry of CSA1 and CSA2 137Cs brachytherapy source models.
    Selvam TP; Sahoo S; Vishwakarma RS
    Med Phys; 2009 Sep; 36(9):3870-9. PubMed ID: 19810459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phantom size in brachytherapy source dosimetric studies.
    Pérez-Calatayud J; Granero D; Ballester F
    Med Phys; 2004 Jul; 31(7):2075-81. PubMed ID: 15305460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ytterbium-169: a promising new radionuclide for intravascular brachytherapy.
    Patel NS; Fan P; Chiu-Tsao ST; Ravi K; Sherman W; Quon H; Pisch J; Tsao HS; Harrison LB
    Cardiovasc Radiat Med; 2001; 2(3):173-80. PubMed ID: 11786324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of TG-43 dosimetric parameters of brachytherapy sources obtained by three different versions of MCNP codes.
    Zaker N; Zehtabian M; Sina S; Koontz C; Meigooni AS
    J Appl Clin Med Phys; 2016 Mar; 17(2):379-390. PubMed ID: 27074460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dosimetric characterization of the M-15 high-dose-rate Iridium-192 brachytherapy source using the AAPM and ESTRO formalism.
    Ho Than MT; Munro Iii JJ; Medich DC
    J Appl Clin Med Phys; 2015 May; 16(3):5270. PubMed ID: 26103489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ytterbium-169: calculated physical properties of a new radiation source for brachytherapy.
    Mason DL; Battista JJ; Barnett RB; Porter AT
    Med Phys; 1992; 19(3):695-703. PubMed ID: 1508110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of low energy brachytherapy Monte Carlo dose calculations to uncertainties in human tissue composition.
    Landry G; Reniers B; Murrer L; Lutgens L; Gurp EB; Pignol JP; Keller B; Beaulieu L; Verhaegen F
    Med Phys; 2010 Oct; 37(10):5188-98. PubMed ID: 21089752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.