BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

604 related articles for article (PubMed ID: 16872277)

  • 1. Negative regulation of the Nrf1 transcription factor by its N-terminal domain is independent of Keap1: Nrf1, but not Nrf2, is targeted to the endoplasmic reticulum.
    Zhang Y; Crouch DH; Yamamoto M; Hayes JD
    Biochem J; 2006 Nov; 399(3):373-85. PubMed ID: 16872277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2).
    Tian W; Rojo de la Vega M; Schmidlin CJ; Ooi A; Zhang DD
    J Biol Chem; 2018 Feb; 293(6):2029-2040. PubMed ID: 29255090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome.
    Katoh Y; Iida K; Kang MI; Kobayashi A; Mizukami M; Tong KI; McMahon M; Hayes JD; Itoh K; Yamamoto M
    Arch Biochem Biophys; 2005 Jan; 433(2):342-50. PubMed ID: 15581590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal domain of Nrf1 negatively regulates the full-length CNC-bZIP factor and its shorter isoform LCR-F1/Nrf1β; both are also inhibited by the small dominant-negative Nrf1γ/δ isoforms that down-regulate ARE-battery gene expression.
    Zhang Y; Qiu L; Li S; Xiang Y; Chen J; Ren Y
    PLoS One; 2014; 9(10):e109159. PubMed ID: 25290918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function.
    Wang W; Chan JY
    J Biol Chem; 2006 Jul; 281(28):19676-87. PubMed ID: 16687406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism.
    Velichkova M; Hasson T
    Mol Cell Biol; 2005 Jun; 25(11):4501-13. PubMed ID: 15899855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron.
    McMahon M; Thomas N; Itoh K; Yamamoto M; Hayes JD
    J Biol Chem; 2004 Jul; 279(30):31556-67. PubMed ID: 15143058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of topological determinants in the N-terminal domain of transcription factor Nrf1 that control its orientation in the endoplasmic reticulum membrane.
    Zhang Y; Hayes JD
    Biochem J; 2010 Sep; 430(3):497-510. PubMed ID: 20629635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model.
    Tong KI; Katoh Y; Kusunoki H; Itoh K; Tanaka T; Yamamoto M
    Mol Cell Biol; 2006 Apr; 26(8):2887-900. PubMed ID: 16581765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular localization and cytoplasmic complex status of endogenous Keap1.
    Watai Y; Kobayashi A; Nagase H; Mizukami M; McEvoy J; Singer JD; Itoh K; Yamamoto M
    Genes Cells; 2007 Oct; 12(10):1163-78. PubMed ID: 17903176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response.
    Sun Z; Wu T; Zhao F; Lau A; Birch CM; Zhang DD
    Mol Cell Biol; 2011 May; 31(9):1800-11. PubMed ID: 21383067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The NHB1 (N-terminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation.
    Zhang Y; Lucocq JM; Yamamoto M; Hayes JD
    Biochem J; 2007 Dec; 408(2):161-72. PubMed ID: 17705787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The carboxy-terminal Neh3 domain of Nrf2 is required for transcriptional activation.
    Nioi P; Nguyen T; Sherratt PJ; Pickett CB
    Mol Cell Biol; 2005 Dec; 25(24):10895-906. PubMed ID: 16314513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical cysteine residues of Kelch-like ECH-associated protein 1 in arsenic sensing and suppression of nuclear factor erythroid 2-related factor 2.
    He X; Ma Q
    J Pharmacol Exp Ther; 2010 Jan; 332(1):66-75. PubMed ID: 19808700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the Keap1:Nrf2 interface provides mechanistic insight into Nrf2 signaling.
    Lo SC; Li X; Henzl MT; Beamer LJ; Hannink M
    EMBO J; 2006 Aug; 25(15):3605-17. PubMed ID: 16888629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathways activated by the phytochemical nordihydroguaiaretic acid contribute to a Keap1-independent regulation of Nrf2 stability: Role of glycogen synthase kinase-3.
    Rojo AI; Medina-Campos ON; Rada P; Zúñiga-Toalá A; López-Gazcón A; Espada S; Pedraza-Chaverri J; Cuadrado A
    Free Radic Biol Med; 2012 Jan; 52(2):473-87. PubMed ID: 22142471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2.
    Sun Z; Zhang S; Chan JY; Zhang DD
    Mol Cell Biol; 2007 Sep; 27(18):6334-49. PubMed ID: 17636022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm.
    Zipper LM; Mulcahy RT
    J Biol Chem; 2002 Sep; 277(39):36544-52. PubMed ID: 12145307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protection against chromium (VI)-induced oxidative stress and apoptosis by Nrf2. Recruiting Nrf2 into the nucleus and disrupting the nuclear Nrf2/Keap1 association.
    He X; Lin GX; Chen MG; Zhang JX; Ma Q
    Toxicol Sci; 2007 Jul; 98(1):298-309. PubMed ID: 17420218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different exercise durations on Keap1-Nrf2-ARE pathway activation in mouse skeletal muscle.
    Li T; He S; Liu S; Kong Z; Wang J; Zhang Y
    Free Radic Res; 2015 Oct; 49(10):1269-74. PubMed ID: 26118597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.