These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 16872404)
1. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Tam le T; Eymann C; Albrecht D; Sietmann R; Schauer F; Hecker M; Antelmann H Environ Microbiol; 2006 Aug; 8(8):1408-27. PubMed ID: 16872404 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome and proteome analyses in response to 2-methylhydroquinone and 6-brom-2-vinyl-chroman-4-on reveal different degradation systems involved in the catabolism of aromatic compounds in Bacillus subtilis. Nguyen VD; Wolf C; Mäder U; Lalk M; Langer P; Lindequist U; Hecker M; Antelmann H Proteomics; 2007 May; 7(9):1391-408. PubMed ID: 17407181 [TBL] [Abstract][Full Text] [Related]
3. Proteome signatures for stress and starvation in Bacillus subtilis as revealed by a 2-D gel image color coding approach. Tam le T; Antelmann H; Eymann C; Albrecht D; Bernhardt J; Hecker M Proteomics; 2006 Aug; 6(16):4565-85. PubMed ID: 16847875 [TBL] [Abstract][Full Text] [Related]
4. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis. Antelmann H; Hecker M; Zuber P Expert Rev Proteomics; 2008 Feb; 5(1):77-90. PubMed ID: 18282125 [TBL] [Abstract][Full Text] [Related]
5. The proteome and transcriptome analysis of Bacillus subtilis in response to salicylic acid. Duy NV; Mäder U; Tran NP; Cavin JF; Tam le T; Albrecht D; Hecker M; Antelmann H Proteomics; 2007 Mar; 7(5):698-710. PubMed ID: 17295427 [TBL] [Abstract][Full Text] [Related]
6. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis. Choi SK; Saier MH J Mol Microbiol Biotechnol; 2005; 10(1):40-50. PubMed ID: 16491025 [TBL] [Abstract][Full Text] [Related]
7. Global gene expression profiling of Bacillus subtilis in response to ammonium and tryptophan starvation as revealed by transcriptome and proteome analysis. Tam le T; Eymann C; Antelmann H; Albrecht D; Hecker M J Mol Microbiol Biotechnol; 2007; 12(1-2):121-30. PubMed ID: 17183219 [TBL] [Abstract][Full Text] [Related]
8. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response of Bacillus subtilis. Reder A; Höper D; Weinberg C; Gerth U; Fraunholz M; Hecker M Mol Microbiol; 2008 Sep; 69(5):1104-20. PubMed ID: 18643936 [TBL] [Abstract][Full Text] [Related]
9. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. Jürgen B; Tobisch S; Wümpelmann M; Gördes D; Koch A; Thurow K; Albrecht D; Hecker M; Schweder T Biotechnol Bioeng; 2005 Nov; 92(3):277-98. PubMed ID: 16178035 [TBL] [Abstract][Full Text] [Related]
10. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
11. Changes in structure, activity and metabolism of aerobic granules as a microbial response to high phenol loading. Jiang HL; Tay JH; Tay ST Appl Microbiol Biotechnol; 2004 Feb; 63(5):602-8. PubMed ID: 12802532 [TBL] [Abstract][Full Text] [Related]
12. The response of Bacillus licheniformis to heat and ethanol stress and the role of the SigB regulon. Voigt B; Schroeter R; Jürgen B; Albrecht D; Evers S; Bongaerts J; Maurer KH; Schweder T; Hecker M Proteomics; 2013 Jul; 13(14):2140-61. PubMed ID: 23592518 [TBL] [Abstract][Full Text] [Related]
13. Phenol degradation by an enterobacterium: a Klebsiella strain carries a TOL-like plasmid and a gene encoding a novel phenol hydroxylase. Heesche-Wagner K; Schwarz T; Kaufmann M Can J Microbiol; 1999 Feb; 45(2):162-71. PubMed ID: 10380649 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Characterization of the Fur Regulatory Network Reveals a Link between Catechol Degradation and Bacillibactin Metabolism in Bacillus subtilis. Pi H; Helmann JD mBio; 2018 Oct; 9(5):. PubMed ID: 30377275 [TBL] [Abstract][Full Text] [Related]
15. Characterization of catechol 2,3-dioxygenase from Planococcus sp. strain S5 induced by high phenol concentration. Hupert-Kocurek K; Guzik U; Wojcieszyńska D Acta Biochim Pol; 2012; 59(3):345-51. PubMed ID: 22826823 [TBL] [Abstract][Full Text] [Related]
16. Proteomic signatures for daunomycin and adriamycin in Bacillus subtilis. Sender U; Bandow J; Engelmann S; Lindequist U; Hecker M Pharmazie; 2004 Jan; 59(1):65-70. PubMed ID: 14964425 [TBL] [Abstract][Full Text] [Related]
17. Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. Michel A; Agerer F; Hauck CR; Herrmann M; Ullrich J; Hacker J; Ohlsen K J Bacteriol; 2006 Aug; 188(16):5783-96. PubMed ID: 16885446 [TBL] [Abstract][Full Text] [Related]
18. Salt stress adaptation of Bacillus subtilis: a physiological proteomics approach. Höper D; Bernhardt J; Hecker M Proteomics; 2006 Mar; 6(5):1550-62. PubMed ID: 16440371 [TBL] [Abstract][Full Text] [Related]
19. Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons. Rojas-Tapias DF; Helmann JD J Bacteriol; 2019 Jul; 201(13):. PubMed ID: 30962353 [TBL] [Abstract][Full Text] [Related]
20. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Veselý M; Knoppová M; Nesvera J; Pátek M Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]