These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 16872483)

  • 1. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data.
    Jeffery IB; Higgins DG; Culhane AC
    BMC Bioinformatics; 2006 Jul; 7():359. PubMed ID: 16872483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrow plot: a new graphical tool for selecting up and down regulated genes and genes differentially expressed on sample subgroups.
    Silva-Fortes C; Amaral Turkman MA; Sousa L
    BMC Bioinformatics; 2012 Jun; 13():147. PubMed ID: 22734592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of different machine learning methods on microarray gene expression data.
    Pirooznia M; Yang JY; Yang MQ; Deng Y
    BMC Genomics; 2008; 9 Suppl 1(Suppl 1):S13. PubMed ID: 18366602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction potential of candidate biomarker sets identified and validated on gene expression data from multiple datasets.
    Gormley M; Dampier W; Ertel A; Karacali B; Tozeren A
    BMC Bioinformatics; 2007 Oct; 8():415. PubMed ID: 17963508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified framework for finding differentially expressed genes from microarray experiments.
    Shaik JS; Yeasin M
    BMC Bioinformatics; 2007 Sep; 8():347. PubMed ID: 17877806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes.
    Jirapech-Umpai T; Aitken S
    BMC Bioinformatics; 2005 Jun; 6():148. PubMed ID: 15958165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical gene selection and genetic fuzzy system for cancer microarray data classification.
    Nguyen T; Khosravi A; Creighton D; Nahavandi S
    PLoS One; 2015; 10(3):e0120364. PubMed ID: 25823003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential prioritization between relevance and redundancy in correlation-based feature selection techniques for multiclass gene expression data.
    Ooi CH; Chetty M; Teng SW
    BMC Bioinformatics; 2006 Jun; 7():320. PubMed ID: 16796748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The feature selection bias problem in relation to high-dimensional gene data.
    Krawczuk J; Łukaszuk T
    Artif Intell Med; 2016 Jan; 66():63-71. PubMed ID: 26674595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Outcome prediction based on microarray analysis: a critical perspective on methods.
    Zervakis M; Blazadonakis ME; Tsiliki G; Danilatou V; Tsiknakis M; Kafetzopoulos D
    BMC Bioinformatics; 2009 Feb; 10():53. PubMed ID: 19200394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of feature selection methods for cross-laboratory microarray analysis.
    Liu HC; Peng PC; Hsieh TC; Yeh TC; Lin CJ; Chen CY; Hou JY; Shih LY; Liang DC
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):593-604. PubMed ID: 24091394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stratification bias in low signal microarray studies.
    Parker BJ; Günter S; Bedo J
    BMC Bioinformatics; 2007 Sep; 8():326. PubMed ID: 17764577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mining published lists of cancer related microarray experiments: identification of a gene expression signature having a critical role in cell-cycle control.
    Finocchiaro G; Mancuso F; Muller H
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S14. PubMed ID: 16351740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rank-based methods as a non-parametric alternative of the T-statistic for the analysis of biological microarray data.
    Breitling R; Herzyk P
    J Bioinform Comput Biol; 2005 Oct; 3(5):1171-89. PubMed ID: 16278953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many accurate small-discriminatory feature subsets exist in microarray transcript data: biomarker discovery.
    Grate LR
    BMC Bioinformatics; 2005 Apr; 6():97. PubMed ID: 15826317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GEOlimma: differential expression analysis and feature selection using pre-existing microarray data.
    Lu L; Townsend KA; Daigle BJ
    BMC Bioinformatics; 2021 Feb; 22(1):44. PubMed ID: 33535967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leveraging two-way probe-level block design for identifying differential gene expression with high-density oligonucleotide arrays.
    Barrera L; Benner C; Tao YC; Winzeler E; Zhou Y
    BMC Bioinformatics; 2004 Apr; 5():42. PubMed ID: 15099405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laplacian linear discriminant analysis approach to unsupervised feature selection.
    Niijima S; Okuno Y
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):605-14. PubMed ID: 19875859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of small n statistical tests of differential expression applied to microarrays.
    Murie C; Woody O; Lee AY; Nadon R
    BMC Bioinformatics; 2009 Feb; 10():45. PubMed ID: 19192265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.