These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 16872617)
1. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. Vande Geest JP; Sacks MS; Vorp DA J Biomech; 2006; 39(13):2347-54. PubMed ID: 16872617 [TBL] [Abstract][Full Text] [Related]
2. Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behaviour and material modelling. Tong J; Cohnert T; Regitnig P; Holzapfel GA Eur J Vasc Endovasc Surg; 2011 Aug; 42(2):207-19. PubMed ID: 21440466 [TBL] [Abstract][Full Text] [Related]
3. Porohyperelastic finite element modeling of abdominal aortic aneurysms. Ayyalasomayajula A; Vande Geest JP; Simon BR J Biomech Eng; 2010 Oct; 132(10):104502. PubMed ID: 20887020 [TBL] [Abstract][Full Text] [Related]
4. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. Vande Geest JP; Sacks MS; Vorp DA J Biomech; 2006; 39(7):1324-34. PubMed ID: 15885699 [TBL] [Abstract][Full Text] [Related]
6. Toward a model for local drug delivery in abdominal aortic aneurysms. Vande Geest JP; Simon BR; Mortazavi A Ann N Y Acad Sci; 2006 Nov; 1085():396-9. PubMed ID: 17182962 [TBL] [Abstract][Full Text] [Related]
7. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. O'Leary SA; Kavanagh EG; Grace PA; McGloughlin TM; Doyle BJ J Biomech; 2014 Apr; 47(6):1430-7. PubMed ID: 24565182 [TBL] [Abstract][Full Text] [Related]
8. Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. Rodríguez JF; Ruiz C; Doblaré M; Holzapfel GA J Biomech Eng; 2008 Apr; 130(2):021023. PubMed ID: 18412510 [TBL] [Abstract][Full Text] [Related]
10. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Vande Geest JP; Di Martino ES; Bohra A; Makaroun MS; Vorp DA Ann N Y Acad Sci; 2006 Nov; 1085():11-21. PubMed ID: 17182918 [TBL] [Abstract][Full Text] [Related]
11. Micromechanical characterization of intra-luminal thrombus tissue from abdominal aortic aneurysms. Gasser TC; Martufi G; Auer M; Folkesson M; Swedenborg J Ann Biomed Eng; 2010 Feb; 38(2):371-9. PubMed ID: 19921436 [TBL] [Abstract][Full Text] [Related]
12. Thrombus versus wall biological activities in experimental aortic aneurysms. Coutard M; Touat Z; Houard X; Leclercq A; Michel JB J Vasc Res; 2010; 47(4):355-66. PubMed ID: 20016209 [TBL] [Abstract][Full Text] [Related]
13. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Gasser TC; Nchimi A; Swedenborg J; Roy J; Sakalihasan N; Böckler D; Hyhlik-Dürr A Eur J Vasc Endovasc Surg; 2014 Mar; 47(3):288-95. PubMed ID: 24456739 [TBL] [Abstract][Full Text] [Related]
14. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Folkesson M; Silveira A; Eriksson P; Swedenborg J Atherosclerosis; 2011 Oct; 218(2):294-9. PubMed ID: 21632052 [TBL] [Abstract][Full Text] [Related]
15. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. Wang DH; Makaroun M; Webster MW; Vorp DA J Biomech Eng; 2001 Dec; 123(6):536-9. PubMed ID: 11783723 [TBL] [Abstract][Full Text] [Related]
16. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Maier A; Gee MW; Reeps C; Eckstein HH; Wall WA Biomech Model Mechanobiol; 2010 Oct; 9(5):511-21. PubMed ID: 20143120 [TBL] [Abstract][Full Text] [Related]
17. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. Gasser TC; Görgülü G; Folkesson M; Swedenborg J J Vasc Surg; 2008 Jul; 48(1):179-88. PubMed ID: 18486417 [TBL] [Abstract][Full Text] [Related]
18. Importance of material model in wall stress prediction in abdominal aortic aneurysms. Polzer S; Gasser TC; Bursa J; Staffa R; Vlachovsky R; Man V; Skacel P Med Eng Phys; 2013 Sep; 35(9):1282-9. PubMed ID: 23434615 [TBL] [Abstract][Full Text] [Related]
19. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Vande Geest JP; Wang DH; Wisniewski SR; Makaroun MS; Vorp DA Ann Biomed Eng; 2006 Jul; 34(7):1098-106. PubMed ID: 16786395 [TBL] [Abstract][Full Text] [Related]
20. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. Speelman L; Bohra A; Bosboom EM; Schurink GW; van de Vosse FN; Makaorun MS; Vorp DA J Biomech Eng; 2007 Feb; 129(1):105-9. PubMed ID: 17227104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]