BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16872630)

  • 1. Two distinct binding modes of a protein cofactor with its target RNA.
    Bokinsky G; Nivón LG; Liu S; Chai G; Hong M; Weeks KM; Zhuang X
    J Mol Biol; 2006 Aug; 361(4):771-84. PubMed ID: 16872630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-dependent transition states for ribonucleoprotein assembly.
    Webb AE; Rose MA; Westhof E; Weeks KM
    J Mol Biol; 2001 Jun; 309(5):1087-100. PubMed ID: 11399081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the self-chaperoning function of an RNA collapsed state.
    Garcia I; Weeks KM
    Biochemistry; 2004 Dec; 43(48):15179-86. PubMed ID: 15568809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex.
    Webb AE; Weeks KM
    Nat Struct Biol; 2001 Feb; 8(2):135-40. PubMed ID: 11175902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron.
    Weeks KM; Cech TR
    Biochemistry; 1995 Jun; 34(23):7728-38. PubMed ID: 7540041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near native structure in an RNA collapsed state.
    Buchmueller KL; Weeks KM
    Biochemistry; 2003 Dec; 42(47):13869-78. PubMed ID: 14636054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A collapsed non-native RNA folding state.
    Buchmueller KL; Webb AE; Richardson DA; Weeks KM
    Nat Struct Biol; 2000 May; 7(5):362-6. PubMed ID: 10802730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA.
    Gampel A; Cech TR
    Genes Dev; 1991 Oct; 5(10):1870-80. PubMed ID: 1916266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly of a ribonucleoprotein catalyst by tertiary structure capture.
    Weeks KM; Cech TR
    Science; 1996 Jan; 271(5247):345-8. PubMed ID: 8553068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein.
    Lewin AS; Thomas J; Tirupati HK
    Mol Cell Biol; 1995 Dec; 15(12):6971-8. PubMed ID: 8524264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential helix stabilities and sites pre-organized for tertiary interactions revealed by monitoring local nucleotide flexibility in the bI5 group I intron RNA.
    Chamberlin SI; Weeks KM
    Biochemistry; 2003 Feb; 42(4):901-9. PubMed ID: 12549908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and development of a catalytic ribonucleoprotein.
    Atsumi S; Ikawa Y; Shiraishi H; Inoue T
    EMBO J; 2001 Oct; 20(19):5453-60. PubMed ID: 11574477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposition and exon shuffling by group II intron RNA molecules in pieces.
    Hiller R; Hetzer M; Schweyen RJ; Mueller MW
    J Mol Biol; 2000 Mar; 297(2):301-8. PubMed ID: 10715202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact but disordered states of RNA.
    Woodson SA
    Nat Struct Biol; 2000 May; 7(5):349-52. PubMed ID: 10802725
    [No Abstract]   [Full Text] [Related]  

  • 20. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.