These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
699 related articles for article (PubMed ID: 16872644)
1. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Peters JH; Simasko SM; Ritter RC Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644 [TBL] [Abstract][Full Text] [Related]
2. Dorsomedial hypothalamic nucleus neurons integrate important peripheral feeding-related signals in rats. Zhu JN; Guo CL; Li HZ; Wang JJ J Neurosci Res; 2007 Nov; 85(14):3193-204. PubMed ID: 17628497 [TBL] [Abstract][Full Text] [Related]
3. The role of the vagus nerve in mediating the long-term anorectic effects of leptin. Sachot C; Rummel C; Bristow AF; Luheshi GN J Neuroendocrinol; 2007 Apr; 19(4):250-61. PubMed ID: 17355316 [TBL] [Abstract][Full Text] [Related]
5. Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Peters JH; Karpiel AB; Ritter RC; Simasko SM Endocrinology; 2004 Aug; 145(8):3652-7. PubMed ID: 15105382 [TBL] [Abstract][Full Text] [Related]
6. Role of cholecystokinin in the control of food intake. Peikin SR Gastroenterol Clin North Am; 1989 Dec; 18(4):757-75. PubMed ID: 2693351 [TBL] [Abstract][Full Text] [Related]
7. Plasticity in vagal afferent neurones during feeding and fasting: mechanisms and significance. Dockray GJ; Burdyga G Acta Physiol (Oxf); 2011 Mar; 201(3):313-21. PubMed ID: 21062423 [TBL] [Abstract][Full Text] [Related]
8. The versatility of the vagus. Dockray GJ Physiol Behav; 2009 Jul; 97(5):531-6. PubMed ID: 19419683 [TBL] [Abstract][Full Text] [Related]
9. Brain-gut axis and its role in the control of food intake. Konturek SJ; Konturek JW; Pawlik T; Brzozowski T J Physiol Pharmacol; 2004 Mar; 55(1 Pt 2):137-54. PubMed ID: 15082874 [TBL] [Abstract][Full Text] [Related]
10. Leptin and CCK selectively activate vagal afferent neurons innervating the stomach and duodenum. Peters JH; Ritter RC; Simasko SM Am J Physiol Regul Integr Comp Physiol; 2006 Jun; 290(6):R1544-9. PubMed ID: 16384857 [TBL] [Abstract][Full Text] [Related]
11. NMDA NR2 receptors participate in CCK-induced reduction of food intake and hindbrain neuronal activation. Guard DB; Swartz TD; Ritter RC; Burns GA; Covasa M Brain Res; 2009 Apr; 1266():37-44. PubMed ID: 19232331 [TBL] [Abstract][Full Text] [Related]
12. Vagal afferent neurons projecting to the stomach and small intestine exhibit multiple N-methyl-D-aspartate receptor subunit phenotypes. Czaja K; Ritter RC; Burns GA Brain Res; 2006 Nov; 1119(1):86-93. PubMed ID: 16989781 [TBL] [Abstract][Full Text] [Related]
13. CCK elicits and modulates vagal afferent activity arising from gastric and duodenal sites. Schwartz GJ; Moran TH Ann N Y Acad Sci; 1994 Mar; 713():121-8. PubMed ID: 8185153 [TBL] [Abstract][Full Text] [Related]
15. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Fox EA Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865 [TBL] [Abstract][Full Text] [Related]
16. Gastric effects of cholecystokinin and its interaction with leptin on brainstem neuronal activity in neonatal rats. Yuan CS; Attele AS; Dey L; Xie JT J Pharmacol Exp Ther; 2000 Oct; 295(1):177-82. PubMed ID: 10991976 [TBL] [Abstract][Full Text] [Related]
17. Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Burdyga G; Lal S; Spiller D; Jiang W; Thompson D; Attwood S; Saeed S; Grundy D; Varro A; Dimaline R; Dockray GJ Gastroenterology; 2003 Jan; 124(1):129-39. PubMed ID: 12512037 [TBL] [Abstract][Full Text] [Related]