These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16872659)

  • 1. Formation of methyl mercury in an aquatic macrophyte.
    Göthberg A; Greger M
    Chemosphere; 2006 Dec; 65(11):2096-105. PubMed ID: 16872659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of nutrient level on methylmercury content in water spinach.
    Greger M; Dabrowska B
    Environ Toxicol Chem; 2010 Aug; 29(8):1735-9. PubMed ID: 20821626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The process of methylmercury accumulation in rice (Oryza sativa L.).
    Meng B; Feng X; Qiu G; Liang P; Li P; Chen C; Shang L
    Environ Sci Technol; 2011 Apr; 45(7):2711-7. PubMed ID: 21366217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phyto-remediation potential of Ipomoea aquatica for Cr(VI) mitigation.
    Weerasinghe A; Ariyawnasa S; Weerasooriya R
    Chemosphere; 2008 Jan; 70(3):521-4. PubMed ID: 17720213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of phthalic acid esters in water spinach (Ipomoea aquatica) and in paddy soil.
    Cai QY; Mo CH; Wu T; Zeng QY
    Bull Environ Contam Toxicol; 2006 Sep; 77(3):411-8. PubMed ID: 17033869
    [No Abstract]   [Full Text] [Related]  

  • 6. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.
    Wang KS; Huang LC; Lee HS; Chen PY; Chang SH
    Chemosphere; 2008 Jun; 72(4):666-72. PubMed ID: 18471856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters.
    Regier N; Larras F; Bravo AG; Ungureanu VG; Amouroux D; Cosio C
    Chemosphere; 2013 Jan; 90(2):595-602. PubMed ID: 23021383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study of inorganic and methylmercury bioaccumulation by four species of freshwater rooted macrophytes from water and sediment contamination sources.
    Ribeyre F; Boudou A
    Ecotoxicol Environ Saf; 1994 Aug; 28(3):270-86. PubMed ID: 7525222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and trophic contamination of the herbivorous carp Ctenopharyngodon idella by inorganic mercury and methylmercury.
    Simon O; Boudou A
    Ecotoxicol Environ Saf; 2001 Sep; 50(1):48-59. PubMed ID: 11534952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach.
    Göthberg A; Greger M; Holm K; Bengtsson BE
    J Environ Qual; 2004; 33(4):1247-55. PubMed ID: 15254106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand.
    Göthberg A; Greger M; Bengtsson BE
    Environ Toxicol Chem; 2002 Sep; 21(9):1934-9. PubMed ID: 12206434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury speciation analyses in HgCl(2)-contaminated soils and groundwater--implications for risk assessment and remediation strategies.
    Bollen A; Wenke A; Biester H
    Water Res; 2008 Jan; 42(1-2):91-100. PubMed ID: 17675134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccumulation of total and methyl mercury by arthropods.
    Zheng DM; Wang QC; Zhang ZS; Zheng N; Zhang XW
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):95-100. PubMed ID: 18365125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region.
    Achá D; Hintelmann H; Yee J
    Chemosphere; 2011 Feb; 82(6):911-6. PubMed ID: 21074243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental mercury contamination of an artisanal zinc smelting area in Weining County, Guizhou, China.
    Li G; Feng X; Qiu G; Bi X; Li Z; Zhang C; Wang D; Shang L; Guo Y
    Environ Pollut; 2008 Jul; 154(1):21-31. PubMed ID: 18162270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic uptake by two vegetables grown in two soils amended with As-bearing animal manures.
    Yao LX; Li GL; Dang Z; He ZH; Zhou CM; Yang BM
    J Hazard Mater; 2009 May; 164(2-3):904-10. PubMed ID: 18929443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mercury species in lymphoid and non-lymphoid tissues after exposure to methyl mercury: correlation with autoimmune parameters during and after treatment in susceptible mice.
    Havarinasab S; Björn E; Nielsen JB; Hultman P
    Toxicol Appl Pharmacol; 2007 May; 221(1):21-8. PubMed ID: 17399758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abiotic methylation of mercury in the aquatic environment.
    Celo V; Lean DR; Scott SL
    Sci Total Environ; 2006 Sep; 368(1):126-37. PubMed ID: 16226793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of spinach (Spinacea oleracea) to the added fluoride in an alkaline soil.
    Jha SK; Nayak AK; Sharma YK
    Food Chem Toxicol; 2008 Sep; 46(9):2968-71. PubMed ID: 18639373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.