These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 16872660)

  • 1. Survival strategies of plants associated with arbuscular mycorrhizal fungi on toxic mine tailings.
    Leung HM; Ye ZH; Wong MH
    Chemosphere; 2007 Jan; 66(5):905-15. PubMed ID: 16872660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L.
    Wu FY; Ye ZH; Wong MH
    Chemosphere; 2009 Aug; 76(9):1258-64. PubMed ID: 19535126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings.
    Chen BD; Zhu YG; Duan J; Xiao XY; Smith SE
    Environ Pollut; 2007 May; 147(2):374-80. PubMed ID: 16764975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils.
    Leung HM; Ye ZH; Wong MH
    Environ Pollut; 2006 Jan; 139(1):1-8. PubMed ID: 16039023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of arbuscular mycorrhizal inoculation on uranium and arsenic accumulation by Chinese brake fern (Pteris vittata L.) from a uranium mining-impacted soil.
    Chen BD; Zhu YG; Smith FA
    Chemosphere; 2006 Mar; 62(9):1464-73. PubMed ID: 16084565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal concentrations and mycorrhizal status of plants colonizing copper mine tailings: potential for revegetation.
    Chen B; Tang X; Zhu Y; Christie P
    Sci China C Life Sci; 2005 May; 48 Suppl 1():156-64. PubMed ID: 16089342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation.
    Wei CY; Chen TB
    Chemosphere; 2006 May; 63(6):1048-53. PubMed ID: 16297966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of arbuscular mycorrhizal fungal inoculation on heavy metal accumulation of maize grown in a naturally contaminated soil.
    Wang FY; Lin XG; Yin R
    Int J Phytoremediation; 2007; 9(4):345-53. PubMed ID: 18246710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China.
    Yanqun Z; Yuan L; Schvartz C; Langlade L; Fan L
    Environ Int; 2004 Jun; 30(4):567-76. PubMed ID: 15031017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed arbuscular mycorrhizal (AM) fungal application to improve growth and arsenic accumulation of Pteris vittata (As hyperaccumulator) grown in As-contaminated soil.
    Leung HM; Leung AO; Ye ZH; Cheung KC; Yung KK
    Chemosphere; 2013 Aug; 92(10):1367-74. PubMed ID: 23755987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.
    Chen X; Wu C; Tang J; Hu S
    Chemosphere; 2005 Jul; 60(5):665-71. PubMed ID: 15963805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of heavy metals in four grasses grown on lead and zinc mine tailings.
    Shu WS; Zhao YL; Yang B; Xia HP; Lan CY
    J Environ Sci (China); 2004; 16(5):730-4. PubMed ID: 15559800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal accumulation and arbuscular mycorrhizal status in metallicolous and nonmetallicolous populations of Pteris vittata L. and Sedum alfredii Hance.
    Wu FY; Ye ZH; Wu SC; Wong MH
    Planta; 2007 Nov; 226(6):1363-78. PubMed ID: 17624548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L.
    Fayiga AO; Ma LQ; Cao X; Rathinasabapathi B
    Environ Pollut; 2004 Nov; 132(2):289-96. PubMed ID: 15312941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of manganese mining activity on the environment: interactions among soil, plants, and arbuscular mycorrhiza.
    Rivera-Becerril F; Juárez-Vázquez LV; Hernández-Cervantes SC; Acevedo-Sandoval OA; Vela-Correa G; Cruz-Chávez E; Moreno-Espíndola IP; Esquivel-Herrera A; de León-González F
    Arch Environ Contam Toxicol; 2013 Feb; 64(2):219-27. PubMed ID: 23124167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand.
    Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ
    Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.