BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

524 related articles for article (PubMed ID: 16872728)

  • 1. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of incubation on solubility and mobility of trace metals in two contaminated soils.
    Ma LQ; Dong Y
    Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of water-soluble As(III) and As(V) on dehydrogenase activity in soils affected by mine tailings.
    Fernández P; Sommer I; Cram S; Rosas I; Gutiérrez M
    Sci Total Environ; 2005 Sep; 348(1-3):231-43. PubMed ID: 16162327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests.
    Madejón P; Marañón T; Murillo JM; Robinson B
    Environ Pollut; 2004 Nov; 132(1):145-55. PubMed ID: 15276282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity.
    Clemente R; Dickinson NM; Lepp NW
    Environ Pollut; 2008 Sep; 155(2):254-61. PubMed ID: 18249071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of metals and arsenic in soils of central victoria (creswick-ballarat), australia.
    Sultan K
    Arch Environ Contam Toxicol; 2007 Apr; 52(3):339-46. PubMed ID: 17253097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal accumulation in wild plants surrounding mining wastes.
    González RC; González-Chávez MC
    Environ Pollut; 2006 Nov; 144(1):84-92. PubMed ID: 16631286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic, lead, and other trace elements in soils contaminated with pesticide residues at the Hanford site (USA).
    Yokel J; Delistraty DA
    Environ Toxicol; 2003 Apr; 18(2):104-14. PubMed ID: 12635098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China.
    Chen T; Liu X; Zhu M; Zhao K; Wu J; Xu J; Huang P
    Environ Pollut; 2008 Jan; 151(1):67-78. PubMed ID: 17481789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic extractability in soils in the areas of former arsenic mining and smelting, SW Poland.
    Krysiak A; Karczewska A
    Sci Total Environ; 2007 Jul; 379(2-3):190-200. PubMed ID: 17187844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variability of arsenic concentration in soils and plants, and its relationship with iron, manganese and phosphorus.
    Hossain MB; Jahiruddin M; Panaullah GM; Loeppert RH; Islam MR; Duxbury JM
    Environ Pollut; 2008 Dec; 156(3):739-44. PubMed ID: 18644665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of ambient background concentrations of trace metals in soils for risk assessment.
    Zhao FJ; McGrath SP; Merrington G
    Environ Pollut; 2007 Jul; 148(1):221-9. PubMed ID: 17223237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses.
    Kilbride C; Poole J; Hutchings TR
    Environ Pollut; 2006 Sep; 143(1):16-23. PubMed ID: 16406626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential anthropogenic mobilisation of mercury and arsenic from soils on mineralised rocks, Northland, New Zealand.
    Craw D
    J Environ Manage; 2005 Feb; 74(3):283-92. PubMed ID: 15644268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain.
    Chopin EI; Alloway BJ
    Sci Total Environ; 2007 Feb; 373(2-3):488-500. PubMed ID: 17234255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia.
    Hovmand MF; Kemp K; Kystol J; Johnsen I; Riis-Nielsen T; Pacyna JM
    Environ Pollut; 2008 Oct; 155(3):537-41. PubMed ID: 18359134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea.
    Lee PK; Yu S; Jeong YJ; Seo J; Choi SG; Yoon BY
    Chemosphere; 2019 Feb; 217():183-194. PubMed ID: 30419376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential soil washing techniques using hydrochloric acid and sodium hydroxide for remediating arsenic-contaminated soils in abandoned iron-ore mines.
    Jang M; Hwang JS; Choi SI
    Chemosphere; 2007 Jan; 66(1):8-17. PubMed ID: 16831457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.