These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16873117)

  • 1. Darwin at the molecular scale: selection and variance in electron tunnelling proteins including cytochrome c oxidase.
    Moser CC; Page CC; Dutton PL
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1295-305. PubMed ID: 16873117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural engineering principles of electron tunnelling in biological oxidation-reduction.
    Page CC; Moser CC; Chen X; Dutton PL
    Nature; 1999 Nov; 402(6757):47-52. PubMed ID: 10573417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connecting CuA with metal centers of heme a, heme a
    Ramasarma T; Vaigundan D
    Biochem Biophys Res Commun; 2019 Mar; 510(2):261-265. PubMed ID: 30686530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast haem-haem electron transfer in cytochrome c oxidase.
    Verkhovsky MI; Jasaitis A; Wikström M
    Biochim Biophys Acta; 2001 Nov; 1506(3):143-6. PubMed ID: 11779547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres.
    Mason MG; Nicholls P; Cooper CE
    Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy.
    Zaslavsky D; Sadoski RC; Wang K; Durham B; Gennis RB; Millett F
    Biochemistry; 1998 Oct; 37(42):14910-6. PubMed ID: 9778367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox dependent conformational changes in the mixed valence form of the cytochrome c oxidase from p. The reorganization of glutamic acid 278 is coupled to the electron transfer from/to heme a and the binuclear center. denitrificans.
    Hellwig P; Rost B; Mäntele W
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Apr; 57A(5):1123-31. PubMed ID: 11374571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide?
    Cooper CE; Torres J; Sharpe MA; Wilson MT
    FEBS Lett; 1997 Sep; 414(2):281-4. PubMed ID: 9315702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The protein effect in the structure of two ferryl-oxo intermediates at the same oxidation level in the heme copper binuclear center of cytochrome c oxidase.
    Pinakoulaki E; Daskalakis V; Ohta T; Richter OM; Budiman K; Kitagawa T; Ludwig B; Varotsis C
    J Biol Chem; 2013 Jul; 288(28):20261-6. PubMed ID: 23723073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton-controlled electron transfer in cytochrome c oxidase: functional role of the pathways through Glu 286 and Lys 362.
    Brzezinski P; Adelroth P
    Acta Physiol Scand Suppl; 1998 Aug; 643():7-16. PubMed ID: 9789542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new ruthenium complex to study single-electron reduction of the pulsed O(H) state of detergent-solubilized cytochrome oxidase.
    Brand SE; Rajagukguk S; Ganesan K; Geren L; Fabian M; Han D; Gennis RB; Durham B; Millett F
    Biochemistry; 2007 Dec; 46(50):14610-8. PubMed ID: 18027981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of overall oxidation state on infrared spectra of heme a3 cyanide in bovine heart cytochrome c oxidase. Evidence of novel mechanistic roles for CuB.
    Yoshikawa S; Mochizuki M; Zhao XJ; Caughey WS
    J Biol Chem; 1995 Mar; 270(9):4270-9. PubMed ID: 7876186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electron distribution in the "activated" state of cytochrome c oxidase.
    Vilhjálmsdóttir J; Gennis RB; Brzezinski P
    Sci Rep; 2018 May; 8(1):7502. PubMed ID: 29760451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single electron reduction of 'slow' and 'fast' cytochrome-c oxidase.
    Moody AJ; Brandt U; Rich PR
    FEBS Lett; 1991 Nov; 293(1-2):101-5. PubMed ID: 1660000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A.
    Tsukihara T; Aoyama H; Yamashita E; Tomizaki T; Yamaguchi H; Shinzawa-Itoh K; Nakashima R; Yaono R; Yoshikawa S
    Science; 1995 Aug; 269(5227):1069-74. PubMed ID: 7652554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrete Ligand Binding and Electron Transfer Properties of ba
    Koutsoupakis C; Soulimane T; Varotsis C
    Acc Chem Res; 2019 May; 52(5):1380-1390. PubMed ID: 31021078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural models of the redox centres in cytochrome oxidase.
    Holm L; Saraste M; Wikström M
    EMBO J; 1987 Sep; 6(9):2819-23. PubMed ID: 2824194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping.
    Wikström M
    Nature; 1989 Apr; 338(6218):776-8. PubMed ID: 2469960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elementary steps of proton translocation in the catalytic cycle of cytochrome oxidase.
    Verkhovsky MI; Belevich I; Bloch DA; Wikström M
    Biochim Biophys Acta; 2006; 1757(5-6):401-7. PubMed ID: 16829227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.