These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16873117)
21. Electrochemical and ultraviolet/visible/infrared spectroscopic analysis of heme a and a3 redox reactions in the cytochrome c oxidase from Paracoccus denitrificans: separation of heme a and a3 contributions and assignment of vibrational modes. Hellwig P; Grzybek S; Behr J; Ludwig B; Michel H; Mäntele W Biochemistry; 1999 Feb; 38(6):1685-94. PubMed ID: 10026246 [TBL] [Abstract][Full Text] [Related]
22. Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy. Cooper CE; Springett R Philos Trans R Soc Lond B Biol Sci; 1997 Jun; 352(1354):669-76. PubMed ID: 9232854 [TBL] [Abstract][Full Text] [Related]
23. Cytochrome c oxidase: chemistry of a molecular machine. Musser SM; Stowell MH; Chan SI Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492 [TBL] [Abstract][Full Text] [Related]
24. Electron transfer between cytochrome c and the binuclear center of cytochrome oxidase. Rocha M; Springett R J Theor Biol; 2019 Jan; 460():134-141. PubMed ID: 30315812 [TBL] [Abstract][Full Text] [Related]
25. Transmembrane charge separation during the ferryl-oxo -> oxidized transition in a nonpumping mutant of cytochrome c oxidase. Siletsky SA; Pawate AS; Weiss K; Gennis RB; Konstantinov AA J Biol Chem; 2004 Dec; 279(50):52558-65. PubMed ID: 15385565 [TBL] [Abstract][Full Text] [Related]
26. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases. Brändén M; Namslauer A; Hansson O; Aasa R; Brzezinski P Biochemistry; 2003 Nov; 42(45):13178-84. PubMed ID: 14609328 [TBL] [Abstract][Full Text] [Related]
27. Filling the catalytic site of cytochrome c oxidase with electrons. Reduced CuB facilitates internal electron transfer to heme a3. Jancura D; Antalik M; Berka V; Palmer G; Fabian M J Biol Chem; 2006 Jul; 281(29):20003-10. PubMed ID: 16704969 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of electron transfer pathways in cytochrome C oxidase. Tan ML; Balabin I; Onuchic JN Biophys J; 2004 Mar; 86(3):1813-9. PubMed ID: 14990507 [TBL] [Abstract][Full Text] [Related]
30. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. Kubo M; Nakashima S; Yamaguchi S; Ogura T; Mochizuki M; Kang J; Tateno M; Shinzawa-Itoh K; Kato K; Yoshikawa S J Biol Chem; 2013 Oct; 288(42):30259-30269. PubMed ID: 23996000 [TBL] [Abstract][Full Text] [Related]
31. Kinetic resolution of a tryptophan-radical intermediate in the reaction cycle of Paracoccus denitrificans cytochrome c oxidase. Wiertz FG; Richter OM; Ludwig B; de Vries S J Biol Chem; 2007 Oct; 282(43):31580-91. PubMed ID: 17761680 [TBL] [Abstract][Full Text] [Related]
32. Functional flexibility of electron flow between quinol oxidation Q Borek A; Ekiert R; Osyczka A Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):754-761. PubMed ID: 29705394 [TBL] [Abstract][Full Text] [Related]
33. Pulse Radiolysis Studies of Temperature Dependent Electron Transfers among Redox Centers in Farver O; Wherland S; Antholine WE; Gemmen GJ; Chen Y; Pecht I; Fee JA Biochemistry; 2022 Nov; 61(22):2506-2521. PubMed ID: 21028883 [TBL] [Abstract][Full Text] [Related]
34. The steady state behaviour of cytochrome c oxidase in proteoliposomes. Nicholls P FEBS Lett; 1993 Jul; 327(2):194-8. PubMed ID: 8392952 [TBL] [Abstract][Full Text] [Related]
35. Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase. Sharma V; Enkavi G; Vattulainen I; Róg T; Wikström M Proc Natl Acad Sci U S A; 2015 Feb; 112(7):2040-5. PubMed ID: 25646428 [TBL] [Abstract][Full Text] [Related]
36. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Belevich I; Verkhovsky MI; Wikström M Nature; 2006 Apr; 440(7085):829-32. PubMed ID: 16598262 [TBL] [Abstract][Full Text] [Related]
37. Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Llases ME; Morgada MN; Vila AJ Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387303 [TBL] [Abstract][Full Text] [Related]
38. Effects of cytochrome c on the oxidation of reduced cytochrome c oxidase by hydrogen peroxide. Lodder AL; Wever R; van Gelder BF Biochim Biophys Acta; 1994 May; 1185(3):303-10. PubMed ID: 8180234 [TBL] [Abstract][Full Text] [Related]
39. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases. Papa S; Capitanio N; Villani G; Capitanio G; Bizzoca A; Palese LL; Carlino V; De Nitto E Biochimie; 1998 Oct; 80(10):821-36. PubMed ID: 9893941 [TBL] [Abstract][Full Text] [Related]
40. Blocking the K-pathway still allows rapid one-electron reduction of the binuclear center during the anaerobic reduction of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides. Ganesan K; Gennis RB Biochim Biophys Acta; 2010; 1797(6-7):619-24. PubMed ID: 20307488 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]