These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16873128)

  • 1. Transition state theory can be used in studies of enzyme catalysis: lessons from simulations of tunnelling and dynamical effects in lipoxygenase and other systems.
    Olsson MH; Mavri J; Warshel A
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1417-32. PubMed ID: 16873128
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase.
    Olsson MH; Siegbahn PE; Warshel A
    J Am Chem Soc; 2004 Mar; 126(9):2820-8. PubMed ID: 14995199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of tunneling in enzyme catalysis by combining a biased propagation approach and the quantum classical path method: application to lipoxygenase.
    Mavri J; Liu H; Olsson MH; Warshel A
    J Phys Chem B; 2008 May; 112(19):5950-4. PubMed ID: 18069813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating large nuclear quantum mechanical corrections in hydrogen atom transfer reactions in metalloenzymes.
    Olsson MH; Siegbahn PE; Warshel A
    J Biol Inorg Chem; 2004 Jan; 9(1):96-9. PubMed ID: 14663649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of the temperature dependence of isotope effects in enzymatic reactions: the case of dihydrofolate reductase.
    Liu H; Warshel A
    J Phys Chem B; 2007 Jul; 111(27):7852-61. PubMed ID: 17571875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase.
    Jevtic S; Anders J
    J Chem Phys; 2017 Sep; 147(11):114108. PubMed ID: 28938801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum variational transition state theory for hydrogen tunneling in enzyme catalysis.
    Pollak E
    J Phys Chem B; 2012 Nov; 116(43):12966-71. PubMed ID: 22992044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-coupled electron transfer in soybean lipoxygenase: dynamical behavior and temperature dependence of kinetic isotope effects.
    Hatcher E; Soudackov AV; Hammes-Schiffer S
    J Am Chem Soc; 2007 Jan; 129(1):187-96. PubMed ID: 17199298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding Biological Hydrogen Transfer Through the Lens of Temperature Dependent Kinetic Isotope Effects.
    Klinman JP; Offenbacher AR
    Acc Chem Res; 2018 Sep; 51(9):1966-1974. PubMed ID: 30152685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer simulations of quantum tunnelling in enzyme-catalysed hydrogen transfer reactions.
    Ranaghan KE; Mulholland AJ
    Interdiscip Sci; 2010 Mar; 2(1):78-97. PubMed ID: 20640799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen tunnelling in enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein systems.
    Sutcliffe MJ; Masgrau L; Roujeinikova A; Johannissen LO; Hothi P; Basran J; Ranaghan KE; Mulholland AJ; Leys D; Scrutton NS
    Philos Trans R Soc Lond B Biol Sci; 2006 Aug; 361(1472):1375-86. PubMed ID: 16873125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Site Dynamical Effects in the Hydrogen Transfer Rate-limiting Step in the Catalysis of Linoleic Acid by Soybean Lipoxygenase-1 (SLO-1): Primary and Secondary Isotope Contributions.
    Phatak P; Venderley J; Debrota J; Li J; Iyengar SS
    J Phys Chem B; 2015 Jul; 119(30):9532-46. PubMed ID: 26079999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydride transfer in liver alcohol dehydrogenase: quantum dynamics, kinetic isotope effects, and role of enzyme motion.
    Billeter SR; Webb SP; Agarwal PK; Iordanov T; Hammes-Schiffer S
    J Am Chem Soc; 2001 Nov; 123(45):11262-72. PubMed ID: 11697969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extremely elevated room-temperature kinetic isotope effects quantify the critical role of barrier width in enzymatic C-H activation.
    Hu S; Sharma SC; Scouras AD; Soudackov AV; Carr CA; Hammes-Schiffer S; Alber T; Klinman JP
    J Am Chem Soc; 2014 Jun; 136(23):8157-60. PubMed ID: 24884374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does the pressure dependence of kinetic isotope effects report usefully on dynamics in enzyme H-transfer reactions?
    Hoeven R; Heyes DJ; Hay S; Scrutton NS
    FEBS J; 2015 Aug; 282(16):3243-55. PubMed ID: 25581554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dynamics of hydride transfer catalyzed by bimetallic electrophilic catalysis: synchronous motion of Mg(2+) and H(-) in xylose isomerase.
    Garcia-Viloca M; Alhambra C; Truhlar DG; Gao J
    J Am Chem Soc; 2002 Jun; 124(25):7268-9. PubMed ID: 12071725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme dynamics and tunneling enhanced by compression in the hydrogen abstraction catalyzed by soybean lipoxygenase-1.
    Tejero I; Garcia-Viloca M; Gonzalez-Lafont A; Lluch JM; York DM
    J Phys Chem B; 2006 Dec; 110(48):24708-19. PubMed ID: 17134234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.