BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 16873369)

  • 1. Heme displacement mechanism of CooA activation: mutational and Raman spectroscopic evidence.
    Ibrahim M; Kerby RL; Puranik M; Wasbotten IH; Youn H; Roberts GP; Spiro TG
    J Biol Chem; 2006 Sep; 281(39):29165-73. PubMed ID: 16873369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation mechanism of the CO sensor CooA. Mutational and resonance Raman spectroscopic studies.
    Coyle CM; Puranik M; Youn H; Nielsen SB; Williams RD; Kerby RL; Roberts GP; Spiro TG
    J Biol Chem; 2003 Sep; 278(37):35384-93. PubMed ID: 12796503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for displacements of the C-helix by CO ligation and DNA binding to CooA revealed by UV resonance Raman spectroscopy.
    Kubo M; Inagaki S; Yoshioka S; Uchida T; Mizutani Y; Aono S; Kitagawa T
    J Biol Chem; 2006 Apr; 281(16):11271-8. PubMed ID: 16439368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-helix in CooA rolls upon CO binding to ferrous heme.
    Yamashita T; Hoashi Y; Tomisugi Y; Ishikawa Y; Uno T
    J Biol Chem; 2004 Nov; 279(45):47320-5. PubMed ID: 15326178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of heme axial ligands in the regulation of CO binding to CooA.
    Yamashita T; Hoashi Y; Watanabe K; Tomisugi Y; Ishikawa Y; Uno T
    J Biol Chem; 2004 May; 279(20):21394-400. PubMed ID: 15026411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic absorption, EPR, and resonance raman spectroscopy of CooA, a CO-sensing transcription activator from R. rubrum, reveals a five-coordinate NO-heme.
    Reynolds MF; Parks RB; Burstyn JN; Shelver D; Thorsteinsson MV; Kerby RL; Roberts GP; Vogel KM; Spiro TG
    Biochemistry; 2000 Jan; 39(2):388-96. PubMed ID: 10631000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonance Raman evidence for a novel charge relay activation mechanism of the CO-dependent heme protein transcription factor CooA.
    Vogel KM; Spiro TG; Shelver D; Thorsteinsson MV; Roberts GP
    Biochemistry; 1999 Mar; 38(9):2679-87. PubMed ID: 10052938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA binding by an imidazole-sensing CooA variant is dependent on the heme redox state.
    Clark RW; Youn H; Lee AJ; Roberts GP; Burstyn JN
    J Biol Inorg Chem; 2007 Feb; 12(2):139-46. PubMed ID: 17082920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy.
    Otomo A; Ishikawa H; Mizuno M; Kimura T; Kubo M; Shiro Y; Aono S; Mizutani Y
    J Phys Chem B; 2016 Aug; 120(32):7836-43. PubMed ID: 27457181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity.
    Youn H; Kerby RL; Thorsteinsson MV; Clark RW; Burstyn JN; Roberts GP
    J Biol Chem; 2002 Sep; 277(37):33616-23. PubMed ID: 12121986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the role of the N-terminal proline, the distal heme ligand in the CO sensor CooA.
    Clark RW; Youn H; Parks RB; Cherney MM; Roberts GP; Burstyn JN
    Biochemistry; 2004 Nov; 43(44):14149-60. PubMed ID: 15518565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum.
    Shelver D; Thorsteinsson MV; Kerby RL; Chung SY; Roberts GP; Reynolds MF; Parks RB; Burstyn JN
    Biochemistry; 1999 Mar; 38(9):2669-78. PubMed ID: 10052937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of the DNA-binding domains in CooA activation.
    Kuchinskas M; Li H; Conrad M; Roberts G; Poulos TL
    Biochemistry; 2006 Jun; 45(23):7148-53. PubMed ID: 16752905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heme environmental structure of CooA is modulated by the target DNA binding. Evidence from resonance Raman spectroscopy and CO rebinding kinetics.
    Uchida T; Ishikawa H; Takahashi S; Ishimori K; Morishima I; Ohkubo K; Nakajima H; Aono S
    J Biol Chem; 1998 Aug; 273(32):19988-92. PubMed ID: 9685335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation mechanisms of transcriptional regulator CooA revealed by small-angle X-ray scattering.
    Akiyama S; Fujisawa T; Ishimori K; Morishima I; Aono S
    J Mol Biol; 2004 Aug; 341(3):651-68. PubMed ID: 15288777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of histidine 77 as the axial heme ligand of carbonmonoxy CooA by picosecond time-resolved resonance Raman spectroscopy.
    Uchida T; Ishikawa H; Ishimori K; Morishima I; Nakajima H; Aono S; Mizutani Y; Kitagawa T
    Biochemistry; 2000 Oct; 39(42):12747-52. PubMed ID: 11041838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the hydrophobic distal heme pocket of CooA in ligand sensing and response.
    Youn H; Kerby RL; Roberts GP
    J Biol Chem; 2003 Jan; 278(4):2333-40. PubMed ID: 12433917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA.
    Benabbas A; Karunakaran V; Youn H; Poulos TL; Champion PM
    J Biol Chem; 2012 Jun; 287(26):21729-40. PubMed ID: 22544803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing the N-Terminal Velcro Model of CooA Carbon Monoxide Activation.
    Tripathi S; Poulos TL
    Biochemistry; 2018 May; 57(21):3059-3064. PubMed ID: 29708736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the CO-sensing heme protein CooA: new insights from the truncated heme domain and UVRR spectroscopy.
    Ibrahim M; Kuchinskas M; Youn H; Kerby RL; Roberts GP; Poulos TL; Spiro TG
    J Inorg Biochem; 2007 Nov; 101(11-12):1776-85. PubMed ID: 17720248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.