These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 16873479)

  • 41. Using sequence compression to speedup probabilistic profile matching.
    Freschi V; Bogliolo A
    Bioinformatics; 2005 May; 21(10):2225-9. PubMed ID: 15713733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces.
    Aytuna AS; Gursoy A; Keskin O
    Bioinformatics; 2005 Jun; 21(12):2850-5. PubMed ID: 15855251
    [TBL] [Abstract][Full Text] [Related]  

  • 43. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Computation of mutual information from Hidden Markov Models.
    Reker D; Katzenbeisser S; Hamacher K
    Comput Biol Chem; 2010 Dec; 34(5-6):328-33. PubMed ID: 20951093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quasi-consensus-based comparison of profile hidden Markov models for protein sequences.
    Kahsay RY; Wang G; Gao G; Liao L; Dunbrack R
    Bioinformatics; 2005 May; 21(10):2287-93. PubMed ID: 15797916
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins.
    Yuan X; Bystroff C
    Bioinformatics; 2005 Apr; 21(7):1010-9. PubMed ID: 15531601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In silico sequence evolution with site-specific interactions along phylogenetic trees.
    Gesell T; von Haeseler A
    Bioinformatics; 2006 Mar; 22(6):716-22. PubMed ID: 16332711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ROC analysis: applications to the classification of biological sequences and 3D structures.
    Sonego P; Kocsor A; Pongor S
    Brief Bioinform; 2008 May; 9(3):198-209. PubMed ID: 18192302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of functional specificity determinants from protein sequences using log-likelihood ratios.
    Pei J; Cai W; Kinch LN; Grishin NV
    Bioinformatics; 2006 Jan; 22(2):164-71. PubMed ID: 16278237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. FSSA: a novel method for identifying functional signatures from structural alignments.
    Wang K; Samudrala R
    Bioinformatics; 2005 Jul; 21(13):2969-77. PubMed ID: 15860561
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new representation for protein secondary structure prediction based on frequent patterns.
    Birzele F; Kramer S
    Bioinformatics; 2006 Nov; 22(21):2628-34. PubMed ID: 16940325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An alternative model of amino acid replacement.
    Crooks GE; Brenner SE
    Bioinformatics; 2005 Apr; 21(7):975-80. PubMed ID: 15531614
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CHORAL: a differential geometry approach to the prediction of the cores of protein structures.
    Montalvão RW; Smith RE; Lovell SC; Blundell TL
    Bioinformatics; 2005 Oct; 21(19):3719-25. PubMed ID: 16046494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a novel monosaccharide substitution matrix for improved comparison of glycan structures.
    Fujita A; Aoki-Kinoshita KF
    Carbohydr Res; 2022 Jan; 511():108496. PubMed ID: 35030433
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A weighted q-gram method for glycan structure classification.
    Li L; Ching WK; Yamaguchi T; Aoki-Kinoshita KF
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S33. PubMed ID: 20122206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Compositional generative mapping for tree-structured data--part I: bottom-up probabilistic modeling of trees.
    Bacciu D; Micheli A; Sperduti A
    IEEE Trans Neural Netw Learn Syst; 2012 Dec; 23(12):1987-2002. PubMed ID: 24808152
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Maximum common subgraph: some upper bound and lower bound results.
    Huang X; Lai J; Jennings SF
    BMC Bioinformatics; 2006 Dec; 7 Suppl 4(Suppl 4):S6. PubMed ID: 17217524
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extracting glycan motifs using a biochemicallyweighted kernel.
    Jiang H; Aoki-Kinoshita KF; Ching WK
    Bioinformation; 2011; 7(8):405-12. PubMed ID: 22347783
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Handling and conversion of carbohydrate sequence formats and monosaccharide notation.
    Lütteke T
    Methods Mol Biol; 2015; 1273():43-54. PubMed ID: 25753702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.