These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The Gutenberg discontinuity: melt at the lithosphere-asthenosphere boundary. Schmerr N Science; 2012 Mar; 335(6075):1480-3. PubMed ID: 22442480 [TBL] [Abstract][Full Text] [Related]
3. Asynchronous bends in Pacific seamount trails: a case for extensional volcanism? Koppers AA; Staudigel H Science; 2005 Feb; 307(5711):904-7. PubMed ID: 15705846 [TBL] [Abstract][Full Text] [Related]
4. Lithospheric controls on magma composition along Earth's longest continental hotspot track. Davies DR; Rawlinson N; Iaffaldano G; Campbell IH Nature; 2015 Sep; 525(7570):511-4. PubMed ID: 26367795 [TBL] [Abstract][Full Text] [Related]
5. The superswell and mantle dynamics beneath the South pacific. McNutt MK; Judge AV Science; 1990 May; 248(4958):969-75. PubMed ID: 17745401 [TBL] [Abstract][Full Text] [Related]
6. Growth of early continental crust by partial melting of eclogite. Rapp RP; Shimizu N; Norman MD Nature; 2003 Oct; 425(6958):605-9. PubMed ID: 14534583 [TBL] [Abstract][Full Text] [Related]
7. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Gonnermann HM; Mukhopadhyay S Nature; 2007 Oct; 449(7165):1037-40. PubMed ID: 17960241 [TBL] [Abstract][Full Text] [Related]
8. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Hoernle K; Abt DL; Fischer KM; Nichols H; Hauff F; Abers GA; van den Bogaard P; Heydolph K; Alvarado G; Protti M; Strauch W Nature; 2008 Feb; 451(7182):1094-7. PubMed ID: 18223639 [TBL] [Abstract][Full Text] [Related]
9. The concurrent emergence and causes of double volcanic hotspot tracks on the Pacific plate. Jones TD; Davies DR; Campbell IH; Iaffaldano G; Yaxley G; Kramer SC; Wilson CR Nature; 2017 May; 545(7655):472-476. PubMed ID: 28467819 [TBL] [Abstract][Full Text] [Related]
10. Middle tertiary volcanism during ridge-trench interactions in Western california. Cole RB; Basu AR Science; 1992 Oct; 258(5083):793-6. PubMed ID: 17777034 [TBL] [Abstract][Full Text] [Related]
11. Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Wood BJ; Bryndzia LT; Johnson KE Science; 1990 Apr; 248(4953):337-45. PubMed ID: 17784487 [TBL] [Abstract][Full Text] [Related]
12. Volcanism in slab tear faults is larger than in island-arcs and back-arcs. Cocchi L; Passaro S; Tontini FC; Ventura G Nat Commun; 2017 Nov; 8(1):1451. PubMed ID: 29129913 [TBL] [Abstract][Full Text] [Related]
13. Intraplate volcanism originating from upwelling hydrous mantle transition zone. Yang J; Faccenda M Nature; 2020 Mar; 579(7797):88-91. PubMed ID: 32103183 [TBL] [Abstract][Full Text] [Related]
14. Laboratory models of the thermal evolution of the mantle during rollback subduction. Kincaid C; Griffiths RW Nature; 2003 Sep; 425(6953):58-62. PubMed ID: 12955138 [TBL] [Abstract][Full Text] [Related]
15. Magmatism at the Eurasian-North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia). Tschegg C; Bizimis M; Schneider D; Akinin VV; Ntaflos T Lithos; 2011 Jul; 125(1-2):825-835. PubMed ID: 26523071 [TBL] [Abstract][Full Text] [Related]
16. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Kessel R; Schmidt MW; Ulmer P; Pettke T Nature; 2005 Sep; 437(7059):724-7. PubMed ID: 16193050 [TBL] [Abstract][Full Text] [Related]
17. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Yogodzinski GM; Lees JM; Churikova TG; Dorendorf F; Wöerner G; Volynets ON Nature; 2001 Jan; 409(6819):500-4. PubMed ID: 11206543 [TBL] [Abstract][Full Text] [Related]
18. Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates. Kawakatsu H; Kumar P; Takei Y; Shinohara M; Kanazawa T; Araki E; Suyehiro K Science; 2009 Apr; 324(5926):499-502. PubMed ID: 19390042 [TBL] [Abstract][Full Text] [Related]