BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 16873963)

  • 1. Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer's disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification.
    Ohta S; Ohsawa I
    J Alzheimers Dis; 2006 Jul; 9(2):155-66. PubMed ID: 16873963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Alzheimer's disease mitochondrial cascade hypothesis.
    Swerdlow RH; Burns JM; Khan SM
    J Alzheimers Dis; 2010; 20 Suppl 2(Suppl 2):S265-79. PubMed ID: 20442494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial failures in Alzheimer's disease.
    Zhu X; Smith MA; Perry G; Aliev G
    Am J Alzheimers Dis Other Demen; 2004; 19(6):345-52. PubMed ID: 15633943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial abnormalities in Alzheimer's disease: possible targets for therapeutic intervention.
    Silva DF; Selfridge JE; Lu J; E L; Cardoso SM; Swerdlow RH
    Adv Pharmacol; 2012; 64():83-126. PubMed ID: 22840745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring oxidative phosphorylation in human skin fibroblasts.
    Ye F; Hoppel CL
    Anal Biochem; 2013 Jun; 437(1):52-8. PubMed ID: 23462540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitochondrial dihydrolipoyl succinyltransferase deficiency accelerates amyloid pathology and memory deficit in a transgenic mouse model of amyloid deposition.
    Dumont M; Ho DJ; Calingasan NY; Xu H; Gibson G; Beal MF
    Free Radic Biol Med; 2009 Oct; 47(7):1019-27. PubMed ID: 19596066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of TGR5 with INT-777 attenuates oxidative stress and neuronal apoptosis via cAMP/PKCε/ALDH2 pathway after subarachnoid hemorrhage in rats.
    Zuo G; Zhang T; Huang L; Araujo C; Peng J; Travis Z; Okada T; Ocak U; Zhang G; Tang J; Lu X; Zhang JH
    Free Radic Biol Med; 2019 Nov; 143():441-453. PubMed ID: 31493504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases.
    Onyango IG; Khan SM; Bennett JP
    Front Biosci (Landmark Ed); 2017 Jan; 22(5):854-872. PubMed ID: 27814651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities.
    Chen CH; Ferreira JC; Gross ER; Mochly-Rosen D
    Physiol Rev; 2014 Jan; 94(1):1-34. PubMed ID: 24382882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases.
    Aleksandrova Y; Neganova M
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses.
    Nasb M; Tao W; Chen N
    Aging Dis; 2024 Feb; 15(1):43-73. PubMed ID: 37450931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alzheimer's disease is associated with disruption in thiamin transport physiology: A potential role for neuroinflammation.
    Ramamoorthy K; Yoshimura R; Al-Juburi S; Anandam KY; Kapadia R; Alachkar A; Abbott GW; Said HM
    Neurobiol Dis; 2022 Sep; 171():105799. PubMed ID: 35750148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of APP-CTF induces mitophagy dysfunction in the iNSCs model of Alzheimer's disease.
    Lee SE; Kwon D; Shin N; Kong D; Kim NG; Kim HY; Kim MJ; Choi SW; Kang KS
    Cell Death Discov; 2022 Jan; 8(1):1. PubMed ID: 35013145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease.
    Misrani A; Tabassum S; Yang L
    Front Aging Neurosci; 2021; 13():617588. PubMed ID: 33679375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration.
    Kent AC; El Baradie KBY; Hamrick MW
    Oxid Med Cell Longev; 2021; 2021():6626484. PubMed ID: 33574977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-associated changes in amyloid-β and formaldehyde concentrations in cerebrospinal fluid of rhesus monkeys.
    Li ZH; He XP; Li H; He RQ; Hu XT
    Zool Res; 2020 Jul; 41(4):444-448. PubMed ID: 32543791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of oxidative stress and neurotrauma in ALDH2
    Knopp RC; Lee SH; Hollas M; Nepomuceno E; Gonzalez D; Tam K; Aamir D; Wang Y; Pierce E; BenAissa M; Thatcher GRJ
    Redox Biol; 2020 May; 32():101486. PubMed ID: 32155582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alzheimer's Disease and Its Potential Alternative Therapeutics.
    Kisby B; Jarrell JT; Agar ME; Cohen DS; Rosin ER; Cahill CM; Rogers JT; Huang X
    J Alzheimers Dis Parkinsonism; 2019; 9(5):. PubMed ID: 31588368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MicroRNAs and the Genetic Nexus of Brain Aging, Neuroinflammation, Neurodegeneration, and Brain Trauma.
    Sarkar SN; Russell AE; Engler-Chiurazzi EB; Porter KN; Simpkins JW
    Aging Dis; 2019 Apr; 10(2):329-352. PubMed ID: 31011481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A key role for MAM in mediating mitochondrial dysfunction in Alzheimer disease.
    Area-Gomez E; de Groof A; Bonilla E; Montesinos J; Tanji K; Boldogh I; Pon L; Schon EA
    Cell Death Dis; 2018 Feb; 9(3):335. PubMed ID: 29491396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.