These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16874290)

  • 1. Evaluation of digital linear tomosynthesis imaging of total joint arthroplasty using an amorphous selenium flat-panel detector.
    Gomi T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2006 Jul; 62(7):1005-12. PubMed ID: 16874290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical potential of digital linear tomosynthesis imaging of total joint arthroplasty.
    Gomi T; Hirano H
    J Digit Imaging; 2008 Sep; 21(3):312-22. PubMed ID: 17557182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of digital linear tomosynthesis imaging of the temporomandibular joint: initial clinical experience and evaluation.
    Gomi T; Yokoi N; Hirano H
    Dentomaxillofac Radiol; 2007 Dec; 36(8):514-21. PubMed ID: 18033950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the X-ray digital linear tomosynthesis reconstruction processing method for metal artifact reduction.
    Gomi T; Hirano H; Umeda T
    Comput Med Imaging Graph; 2009 Jun; 33(4):267-74. PubMed ID: 19237263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital tomosynthesis with metal artifact reduction for assessing cementless hip arthroplasty: a diagnostic cohort study of 48 patients.
    Tang H; Yang D; Guo S; Tang J; Liu J; Wang D; Zhou Y
    Skeletal Radiol; 2016 Nov; 45(11):1523-32. PubMed ID: 27589968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of TACT to the evaluation of total joint arthroplasty.
    Fahey FH; Webber RL; Chew FS; Dickerson BA
    Med Phys; 2003 Mar; 30(3):454-60. PubMed ID: 12674247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal artifact reduction (MAR) based on two-compartment physical modeling: evaluation in patients with hip implants.
    Boos J; Sawicki LM; Lanzman RS; Thomas C; Aissa J; Schleich C; Heusch P; Antoch G; Kröpil P
    Acta Radiol; 2017 Jan; 58(1):70-76. PubMed ID: 26936899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging.
    Hu YH; Zhao W
    Med Phys; 2014 Nov; 41(11):111904. PubMed ID: 25370637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Digital tomosynthesis aided by low-resolution exact computed tomography.
    Zeng K; Yu H; Zhao S; Fajardo LL; Ruth C; Jing Z; Wang G
    J Comput Assist Tomogr; 2007; 31(6):976-83. PubMed ID: 18043366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using a flat-panel detector in high resolution cone beam CT for dental imaging.
    Baba R; Ueda K; Okabe M
    Dentomaxillofac Radiol; 2004 Sep; 33(5):285-90. PubMed ID: 15585803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry calibration between X-ray source and detector for tomosynthesis with a portable X-ray system.
    Sato K; Ohnishi T; Sekine M; Haneishi H
    Int J Comput Assist Radiol Surg; 2017 May; 12(5):707-717. PubMed ID: 28343304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing metal artifacts in computed tomography caused by hip endoprostheses using a physics-based approach.
    Prell D; Kyriakou Y; Kachelrie M; Kalender WA
    Invest Radiol; 2010 Nov; 45(11):747-54. PubMed ID: 20661145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a chest digital tomosynthesis R/F system and implementation of low-dose GPU-accelerated compressed sensing (CS) image reconstruction.
    Choi S; Lee H; Lee D; Choi S; Lee CL; Kwon W; Shin J; Seo CW; Kim HJ
    Med Phys; 2018 May; 45(5):1871-1888. PubMed ID: 29500855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing parameters for flat-panel detector digital tomosynthesis.
    Machida H; Yuhara T; Mori T; Ueno E; Moribe Y; Sabol JM
    Radiographics; 2010 Mar; 30(2):549-62. PubMed ID: 20228334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array.
    Shan J; Tucker AW; Gaalaas LR; Wu G; Platin E; Mol A; Lu J; Zhou O
    Dentomaxillofac Radiol; 2015; 44(9):20150098. PubMed ID: 26090933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.
    Wellenberg RH; Boomsma MF; van Osch JA; Vlassenbroek A; Milles J; Edens MA; Streekstra GJ; Slump CH; Maas M
    J Comput Assist Tomogr; 2016; 40(6):971-978. PubMed ID: 27331924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction.
    Robertson DD; Yuan J; Wang G; Vannier MW
    J Comput Assist Tomogr; 1997; 21(2):293-8. PubMed ID: 9071303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grating-based phase contrast tomosynthesis imaging: proof-of-concept experimental studies.
    Li K; Ge Y; Garrett J; Bevins N; Zambelli J; Chen GH
    Med Phys; 2014 Jan; 41(1):011903. PubMed ID: 24387511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study.
    Shan J; Tucker AW; Lee YZ; Heath MD; Wang X; Foos DH; Lu J; Zhou O
    Phys Med Biol; 2015 Jan; 60(1):81-100. PubMed ID: 25478786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital tomosynthesis of the thorax: the influence of respiratory motion artifacts on lung nodule detection.
    Kim SM; Chung MJ; Lee KS; Kang H; Song IY; Lee EJ; Hwang HS
    Acta Radiol; 2013 Jul; 54(6):634-9. PubMed ID: 23528563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.