These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16874373)

  • 1. Quantitative assessment of olfactory receptors activity in immobilized nanosomes: a novel concept for bioelectronic nose.
    Vidic JM; Grosclaude J; Persuy MA; Aioun J; Salesse R; Pajot-Augy E
    Lab Chip; 2006 Aug; 6(8):1026-32. PubMed ID: 16874373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of Olfactory Receptors Carried by Nanosomes onto a Gold Sensor Surface.
    Vidic J; Hou Y
    Methods Mol Biol; 2021; 2268():85-95. PubMed ID: 34085263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances in electronic and bioelectronic noses and their biomedical applications.
    Oh EH; Song HS; Park TH
    Enzyme Microb Technol; 2011 May; 48(6-7):427-37. PubMed ID: 22113013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioelectronic nose: Current status and perspectives.
    Wasilewski T; Gębicki J; Kamysz W
    Biosens Bioelectron; 2017 Jan; 87():480-494. PubMed ID: 27592240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of odorant-binding proteins: a factor influencing the sensitivity of olfactory receptor-based biosensors.
    Ko HJ; Lee SH; Oh EH; Park TH
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):55-62. PubMed ID: 19572152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications and Advances in Bioelectronic Noses for Odour Sensing.
    Dung TT; Oh Y; Choi SJ; Kim ID; Oh MK; Kim M
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29301263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in the development of olfactory-based bioelectronic chemosensors.
    Cave JW; Wickiser JK; Mitropoulos AN
    Biosens Bioelectron; 2019 Jan; 123():211-222. PubMed ID: 30201333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The N-terminal replacement of an olfactory receptor for the development of a yeast-based biomimetic odor sensor.
    Fukutani Y; Nakamura T; Yorozu M; Ishii J; Kondo A; Yohda M
    Biotechnol Bioeng; 2012 Jan; 109(1):205-12. PubMed ID: 21915853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time monitoring of odorant-induced cellular reactions using surface plasmon resonance.
    Lee SH; Ko HJ; Park TH
    Biosens Bioelectron; 2009 Sep; 25(1):55-60. PubMed ID: 19559592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new concept of olfactory biosensor based on interdigitated microelectrodes and immobilized yeasts expressing the human receptor OR17-40.
    Marrakchi M; Vidic J; Jaffrezic-Renault N; Martelet C; Pajot-Augy E
    Eur Biophys J; 2007 Nov; 36(8):1015-8. PubMed ID: 17579849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction.
    Jin HJ; Lee SH; Kim TH; Park J; Song HS; Park TH; Hong S
    Biosens Bioelectron; 2012 May; 35(1):335-341. PubMed ID: 22475887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor.
    Fukutani Y; Ishii J; Noguchi K; Kondo A; Yohda M
    Biotechnol Bioeng; 2012 Dec; 109(12):3143-51. PubMed ID: 22729937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of human olfactory receptor 17-40 with odorants probed by surface plasmon resonance.
    Benilova I; Chegel VI; Ushenin YV; Vidic J; Soldatkin AP; Martelet C; Pajot E; Jaffrezic-Renault N
    Eur Biophys J; 2008 Jul; 37(6):807-14. PubMed ID: 18247023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes.
    Vidic J; Pla-Roca M; Grosclaude J; Persuy MA; Monnerie R; Caballero D; Errachid A; Hou Y; Jaffrezic-Renault N; Salesse R; Pajot-Augy E; Samitier J
    Anal Chem; 2007 May; 79(9):3280-90. PubMed ID: 17394286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectronic Nose Using Olfactory Receptor-Embedded Nanodiscs.
    Yang H; Lee M; Kim D; Hong S; Park TH
    Methods Mol Biol; 2018; 1820():239-249. PubMed ID: 29884950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mimicking nature's noses: from receptor deorphaning to olfactory biosensing.
    Glatz R; Bailey-Hill K
    Prog Neurobiol; 2011 Feb; 93(2):270-96. PubMed ID: 21130137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the odorant sensitivity of olfactory receptor-expressing yeast with accessory proteins.
    Fukutani Y; Hori A; Tsukada S; Sato R; Ishii J; Kondo A; Matsunami H; Yohda M
    Anal Biochem; 2015 Feb; 471():1-8. PubMed ID: 25449303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A portable and multiplexed bioelectronic sensor using human olfactory and taste receptors.
    Son M; Kim D; Ko HJ; Hong S; Park TH
    Biosens Bioelectron; 2017 Jan; 87():901-907. PubMed ID: 27664409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc Nanoparticles-equipped Bioelectronic Nose Using a Microelectrode Array for Odorant Detection.
    Zhang Q; Zhang D; Li N; Lu Y; Yao Y; Li S; Liu Q
    Anal Sci; 2016; 32(4):387-93. PubMed ID: 27063709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On a chip demonstration of a functional role for Odorant Binding Protein in the preservation of olfactory receptor activity at high odorant concentration.
    Vidic J; Grosclaude J; Monnerie R; Persuy MA; Badonnel K; Baly C; Caillol M; Briand L; Salesse R; Pajot-Augy E
    Lab Chip; 2008 May; 8(5):678-88. PubMed ID: 18432336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.