These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16874453)

  • 1. Tubular system excitability: an essential component of excitation-contraction coupling in fast-twitch fibres of vertebrate skeletal muscle.
    Stephenson DG
    J Muscle Res Cell Motil; 2006; 27(5-7):259-74. PubMed ID: 16874453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twitch and tetanic force responses and longitudinal propagation of action potentials in skinned skeletal muscle fibres of the rat.
    Posterino GS; Lamb GD; Stephenson DG
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):131-7. PubMed ID: 10944176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycogen content and excitation-contraction coupling in mechanically skinned muscle fibres of the cane toad.
    Stephenson DG; Nguyen LT; Stephenson GM
    J Physiol; 1999 Aug; 519 Pt 1(Pt 1):177-87. PubMed ID: 10432348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue-induced change in T-system excitability and its major cause in rat fast-twitch skeletal muscle in vivo.
    Watanabe D; Wada M
    J Physiol; 2020 Nov; 598(22):5195-5211. PubMed ID: 32833287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitability of the T-tubular system in rat skeletal muscle: roles of K+ and Na+ gradients and Na+-K+ pump activity.
    Nielsen OB; Ørtenblad N; Lamb GD; Stephenson DG
    J Physiol; 2004 May; 557(Pt 1):133-46. PubMed ID: 15034125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of oxidation and cytosolic redox conditions on excitation-contraction coupling in rat skeletal muscle.
    Posterino GS; Cellini MA; Lamb GD
    J Physiol; 2003 Mar; 547(Pt 3):807-23. PubMed ID: 12562929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L(+)-lactate does not affect twitch and tetanic responses in mechanically skinned mammalian muscle fibres.
    Posterino GS; Dutka TL; Lamb GD
    Pflugers Arch; 2001 May; 442(2):197-203. PubMed ID: 11417214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of transverse-tubular chloride conductance on excitability in skinned skeletal muscle fibres of rat and toad.
    Coonan JR; Lamb GD
    J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):551-64. PubMed ID: 9575303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of low cytoplasmic [ATP] on excitation-contraction coupling in fast-twitch muscle fibres of the rat.
    Dutka TL; Lamb GD
    J Physiol; 2004 Oct; 560(Pt 2):451-68. PubMed ID: 15308682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy.
    Edwards JN; Cully TR; Shannon TR; Stephenson DG; Launikonis BS
    J Physiol; 2012 Feb; 590(3):475-92. PubMed ID: 22155929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres.
    Trinh HH; Lamb GD
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride conductance in the transverse tubular system of rat skeletal muscle fibres: importance in excitation-contraction coupling and fatigue.
    Dutka TL; Murphy RM; Stephenson DG; Lamb GD
    J Physiol; 2008 Feb; 586(3):875-87. PubMed ID: 18033812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Current" advances in mechanically skinned skeletal muscle fibres.
    Posterino GS
    Clin Exp Pharmacol Physiol; 2001 Aug; 28(8):668-74. PubMed ID: 11473535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
    Cairns SP; Taberner AJ; Loiselle DS
    J Appl Physiol (1985); 2009 Jan; 106(1):101-12. PubMed ID: 18948444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that the Na+-K+ leak/pump ratio contributes to the difference in endurance between fast- and slow-twitch muscles.
    Clausen T; Overgaard K; Nielsen OB
    Acta Physiol Scand; 2004 Feb; 180(2):209-16. PubMed ID: 14738479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycogen content and contractile responsiveness to T-system depolarization in skinned muscle fibres of the rat.
    Goodman C; Blazev R; Stephenson G
    Clin Exp Pharmacol Physiol; 2005 Sep; 32(9):749-56. PubMed ID: 16173932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of the Z-disc protein α-actinin-3 impairs the mechanical stability of Actn3KO mouse fast-twitch muscle fibres without altering their contractile properties or twitch kinetics.
    Haug M; Reischl B; Nübler S; Kiriaev L; Mázala DAG; Houweling PJ; North KN; Friedrich O; Head SI
    Skelet Muscle; 2022 Jun; 12(1):14. PubMed ID: 35733150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion channels and ion transporters of the transverse tubular system of skeletal muscle.
    Jurkat-Rott K; Fauler M; Lehmann-Horn F
    J Muscle Res Cell Motil; 2006; 27(5-7):275-90. PubMed ID: 16933023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue.
    Stephenson DG; Lamb GD; Stephenson GM
    Acta Physiol Scand; 1998 Mar; 162(3):229-45. PubMed ID: 9578368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.