BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 16874535)

  • 1. [In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers].
    Gerten G; Ripken T; Breitenfeld P; Krueger RR; Kermani O; Lubatschowski H; Oberheide U
    Ophthalmologe; 2007 Jan; 104(1):40-6. PubMed ID: 16874535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety evaluation of femtosecond lentotomy on the porcine lens by optical measurement with 50-femtosecond laser pulses.
    Zhang J; Wang R; Chen B; Ye P; Zhang W; Zhao H; Zhen J; Huang Y; Wei Z; Gu Y
    Lasers Surg Med; 2013 Sep; 45(7):450-9. PubMed ID: 23926059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis.
    Krueger RR; Kuszak J; Lubatschowski H; Myers RI; Ripken T; Heisterkamp A
    J Cataract Refract Surg; 2005 Dec; 31(12):2386-94. PubMed ID: 16473236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser induced flexibility change of human donor lenses.
    Schumacher S; Oberheide U; Fromm M; Ripken T; Ertmer W; Gerten G; Wegener A; Lubatschowski H
    Vision Res; 2009 Jul; 49(14):1853-9. PubMed ID: 19427880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.
    Stachs O; Schumacher S; Hovakimyan M; Fromm M; Heisterkamp A; Lubatschowski H; Guthoff R
    J Cataract Refract Surg; 2009 Nov; 35(11):1979-83. PubMed ID: 19878832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. fs-Laser induced elasticity changes to improve presbyopic lens accommodation.
    Ripken T; Oberheide U; Fromm M; Schumacher S; Gerten G; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):897-906. PubMed ID: 18030488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].
    Lubatschowski H; Schumacher S; Wegener A; Fromm M; Oberheide U; Hoffmann H; Gerten G
    Klin Monbl Augenheilkd; 2009 Dec; 226(12):984-90. PubMed ID: 20108193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo application and imaging of intralenticular femtosecond laser pulses for the restoration of accommodation.
    Schumacher S; Fromm M; Oberheide U; Gerten G; Wegener A; Lubatschowski H
    J Refract Surg; 2008 Nov; 24(9):991-5. PubMed ID: 19044246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Femtosecond laser photodisruption of the crystalline lens for restoring accommodation.
    Reggiani Mello GH; Krueger RR
    Int Ophthalmol Clin; 2011; 51(2):87-95. PubMed ID: 21383582
    [No Abstract]   [Full Text] [Related]  

  • 10. Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs.
    Ackermann R; Kunert KS; Kammel R; Bischoff S; Bühren SC; Schubert H; Blum M; Nolte S
    Graefes Arch Clin Exp Ophthalmol; 2011 Oct; 249(10):1567-73. PubMed ID: 21853231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurement of Ex Vivo Porcine Lens Shape During Simulated Accommodation, Before and After fs-Laser Treatment.
    Hahn J; Fromm M; Al Halabi F; Besdo S; Lubatschowski H; Ripken T; Krüger A
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5332-43. PubMed ID: 26275131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element modelling of radial lentotomy cuts to improve the accommodation performance of the human lens.
    Burd HJ; Wilde GS
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):727-37. PubMed ID: 26916782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in vitro study on focusing fs-laser pulses into ocular media for ophthalmic surgery.
    Merker M; Ackermann R; Kammel R; Kunert KS; Nolte S
    Lasers Surg Med; 2013 Nov; 45(9):589-96. PubMed ID: 24105636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Presbyopia treatment using a femtosecond laser].
    Blum M; Kunert K; Nolte S; Riehemann S; Palme M; Peschel T; Dick M; Dick HB
    Ophthalmologe; 2006 Dec; 103(12):1014-9. PubMed ID: 17111185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intrastromal femtosecond laser-based presbyopia correction].
    Holzer MP
    Ophthalmologe; 2013 Mar; 110(3):259-62. PubMed ID: 23325297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pig lenses in a lens stretcher: implications for presbyopia treatment.
    Kammel R; Ackermann R; Mai T; Damm C; Nolte S
    Optom Vis Sci; 2012 Jun; 89(6):908-15. PubMed ID: 22561204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability.
    Lubatschowski H; Schumacher S; Fromm M; Wegener A; Hoffmann H; Oberheide U; Gerten G
    J Biophotonics; 2010 Jun; 3(5-6):265-8. PubMed ID: 20437418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finesse of transparent tissue cutting by ultrafast lasers at various wavelengths.
    Wang J; Schuele G; Palanker D
    J Biomed Opt; 2015; 20(12):125004. PubMed ID: 26720869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular lens power calculation after intrastromal femtosecond laser treatment for presbyopia: Theoretic approach.
    Rabsilber TM; Haigis W; Auffarth GU; Mannsfeld A; Ehmer A; Holzer MP
    J Cataract Refract Surg; 2011 Mar; 37(3):532-7. PubMed ID: 21251797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-surface, micrometer-scale incisions produced in rodent cortex using tightly-focused femtosecond laser pulses.
    Nguyen J; Ferdman J; Zhao M; Huland D; Saqqa S; Ma J; Nishimura N; Schwartz TH; Schaffer CB
    Lasers Surg Med; 2011 Jul; 43(5):382-91. PubMed ID: 21674543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.