BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16875235)

  • 1. Application of spectral subtraction method on enhancement of electrolarynx speech.
    Liu H; Zhao Q; Wan M; Wang S
    J Acoust Soc Am; 2006 Jul; 120(1):398-406. PubMed ID: 16875235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of electrolarynx speech based on auditory masking.
    Liu H; Zhao Q; Wan M; Wang S
    IEEE Trans Biomed Eng; 2006 May; 53(5):865-74. PubMed ID: 16686409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolarynx in voice rehabilitation.
    Liu H; Ng ML
    Auris Nasus Larynx; 2007 Sep; 34(3):327-32. PubMed ID: 17239553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental frequency variation with an electrolarynx improves speech understanding: a case study.
    Watson PJ; Schlauch RS
    Am J Speech Lang Pathol; 2009 May; 18(2):162-7. PubMed ID: 19106204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerodynamic characteristics of laryngectomees breathing quietly and speaking with the electrolarynx.
    Liu H; Wan M; Wang S; Niu H
    J Voice; 2004 Dec; 18(4):567-77. PubMed ID: 15567058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term average spectral characteristics of Cantonese alaryngeal speech.
    Ng ML; Liu H; Zhao Q; Lam PK
    Auris Nasus Larynx; 2009 Oct; 36(5):571-7. PubMed ID: 19261410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of aberrant acoustic properties on the perception of sound quality in electrolarynx speech.
    Meltzner GS; Hillman RE
    J Speech Lang Hear Res; 2005 Aug; 48(4):766-79. PubMed ID: 16378472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of electrolarynx speech using adaptive noise cancelling based on independent component analysis.
    Niu HJ; Wan MX; Wang SP; Liu HJ
    Med Biol Eng Comput; 2003 Nov; 41(6):670-8. PubMed ID: 14686593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of a method for the automatic on/off control of an electrolarynx via lip deformation.
    Wan C; Wu L; Wu H; Wang S; Wan M
    J Voice; 2012 Sep; 26(5):674.e21-30. PubMed ID: 22801245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of electrolaryngeal speech quality using a supraglottal voice source with compensation of vocal tract characteristics.
    Wu L; Wan C; Wang S; Wan M
    IEEE Trans Biomed Eng; 2013 Jul; 60(7):1965-74. PubMed ID: 23412568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards undistorted and noise-free speech in an MRI scanner: correlation subtraction followed by spectral noise gating.
    Inouye JM; Blemker SS; Inouye DI
    J Acoust Soc Am; 2014 Mar; 135(3):1019-22. PubMed ID: 24606243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of electrolaryngeal speech by adaptive filtering.
    Espy-Wilson CY; Chari VR; MacAuslan JM; Huang CB; Walsh MJ
    J Speech Lang Hear Res; 1998 Dec; 41(6):1253-64. PubMed ID: 9859882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of spectral change enhancement for the hearing impaired using parameter values selected with a genetic algorithm.
    Chen J; Baer T; Moore BC
    J Acoust Soc Am; 2013 May; 133(5):2910-20. PubMed ID: 23654396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and evaluation of wheel-controlled pitch-adjustable electrolarynx.
    Wang L; Feng Y; Yang Z; Niu H
    Med Biol Eng Comput; 2017 Aug; 55(8):1463-1472. PubMed ID: 28013472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speech intelligibility in background noise with ideal binary time-frequency masking.
    Wang D; Kjems U; Pedersen MS; Boldt JB; Lunner T
    J Acoust Soc Am; 2009 Apr; 125(4):2336-47. PubMed ID: 19354408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of on/off control for electrolaryngeal speech via artificial neural network based on visual information of lips.
    Wu L; Wan C; Wang S; Wan M
    J Voice; 2013 Mar; 27(2):259.e7-259.e16. PubMed ID: 23294707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and perceptual evaluation of amplitude-based F0 control in electrolarynx speech.
    Saikachi Y; Stevens KN; Hillman RE
    J Speech Lang Hear Res; 2009 Oct; 52(5):1360-9. PubMed ID: 19564438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized time-frequency subtraction method for robust speech enhancement based on wavelet filter banks modeling of human auditory system.
    Shao Y; Chang CH
    IEEE Trans Syst Man Cybern B Cybern; 2007 Aug; 37(4):877-89. PubMed ID: 17702286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of electronic larynx in speech rehabilitation after laryngectomy].
    Liang C; Wu X; Li C
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1997 Jun; 32(3):151-2. PubMed ID: 10743153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.