These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16875243)

  • 1. An effective cluster-based model for robust speech detection and speech recognition in noisy environments.
    Górriz JM; Ramírez J; Segura JC; Puntonet CG
    J Acoust Soc Am; 2006 Jul; 120(1):470-81. PubMed ID: 16875243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical voice activity detection based on integrated bispectrum likelihood ratio tests for robust speech recognition.
    Ramírez J; Górriz JM; Segura JC
    J Acoust Soc Am; 2007 May; 121(5 Pt1):2946-58. PubMed ID: 17550192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-inspired speech segmentation for automatic speech recognition using the speech envelope as a temporal reference.
    Lee B; Cho KH
    Sci Rep; 2016 Nov; 6():37647. PubMed ID: 27876875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noise-robust speech triage.
    Bartos AL; Cipr T; Nelson DJ; Schwarz P; Banowetz J; Jerabek L
    J Acoust Soc Am; 2018 Apr; 143(4):2313. PubMed ID: 29716295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the sparse coding shrinkage noise reduction algorithm in normal hearing and hearing impaired listeners.
    Sang J; Hu H; Zheng C; Li G; Lutman ME; Bleeck S
    Hear Res; 2014 Apr; 310():36-47. PubMed ID: 24495441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving word recognition in noise among hearing-impaired subjects with a single-channel cochlear noise-reduction algorithm.
    Fink N; Furst M; Muchnik C
    J Acoust Soc Am; 2012 Sep; 132(3):1718-31. PubMed ID: 22978899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear spectro-temporal features based on a cochlear model for automatic speech recognition in a noisy situation.
    Choi YS; Lee SY
    Neural Netw; 2013 Sep; 45():62-9. PubMed ID: 23558292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining directional microphone and single-channel noise reduction algorithms: a clinical evaluation in difficult listening conditions with cochlear implant users.
    Hersbach AA; Arora K; Mauger SJ; Dawson PW
    Ear Hear; 2012; 33(4):e13-23. PubMed ID: 22555182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A hierarchical framework approach for voice activity detection and speech enhancement.
    Zhang Y; Tang ZM; Li YP; Luo Y
    ScientificWorldJournal; 2014; 2014():723643. PubMed ID: 24959621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic speech recognition using a predictive echo state network classifier.
    Skowronski MD; Harris JG
    Neural Netw; 2007 Apr; 20(3):414-23. PubMed ID: 17556115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voice activity detection in noisy environments based on double-combined fourier transform and line fitting.
    Park J; Kim W; Han DK; Ko H
    ScientificWorldJournal; 2014; 2014():146040. PubMed ID: 25170520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel voice sensor for the detection of speech signals.
    Wang KC
    Sensors (Basel); 2013 Dec; 13(12):16533-50. PubMed ID: 24316566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A subspace approach based on embedded prewhitening for voice activity detection.
    Kim DK; Chang JH
    J Acoust Soc Am; 2011 Nov; 130(5):EL304-10. PubMed ID: 22088032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.
    Schafer PB; Jin DZ
    Neural Comput; 2014 Mar; 26(3):523-56. PubMed ID: 24320849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A probabilistic union model with automatic order selection for noisy speech recognition.
    Jancovic P; Ming J
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1641-8. PubMed ID: 11572373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-order hidden Markov model for piecewise linear processes and applications to speech recognition.
    Lee LM; Jean FR
    J Acoust Soc Am; 2016 Aug; 140(2):EL204. PubMed ID: 27586781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hybrid Speech Enhancement Algorithm for Voice Assistance Application.
    Gnanamanickam J; Natarajan Y; K R SP
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvements in intelligibility of noisy reverberant speech using a binaural subband adaptive noise-cancellation processing scheme.
    Shields PW; Campbell DR
    J Acoust Soc Am; 2001 Dec; 110(6):3232-42. PubMed ID: 11785824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating Noise Robustness in Speech Command Recognition by Noise Augmentation of Training Data.
    Pervaiz A; Hussain F; Israr H; Tahir MA; Raja FR; Baloch NK; Ishmanov F; Zikria YB
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.