BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 16875467)

  • 1. Topology of splicing and snRNP biogenesis in dinoflagellate nuclei.
    Alverca E; Franca S; Díaz de la Espina SM
    Biol Cell; 2006 Dec; 98(12):709-20. PubMed ID: 16875467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Sm core domain mediates targeting of U1 snRNP to subnuclear compartments involved in transcription and splicing.
    Malatesta M; Fakan S; Fischer U
    Exp Cell Res; 1999 Jun; 249(2):189-98. PubMed ID: 10366418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules.
    Puvion E; Puvion-Dutilleul F
    Exp Cell Res; 1996 Dec; 229(2):217-25. PubMed ID: 8986601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential interaction of splicing snRNPs with coiled bodies and interchromatin granules during mitosis and assembly of daughter cell nuclei.
    Ferreira JA; Carmo-Fonseca M; Lamond AI
    J Cell Biol; 1994 Jul; 126(1):11-23. PubMed ID: 8027171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates.
    Moreno Díaz de la Espina S; Alverca E; Cuadrado A; Franca S
    Eur J Cell Biol; 2005 Mar; 84(2-3):137-49. PubMed ID: 15819396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sm and U2B" proteins redistribute to different nuclear domains in dormant and proliferating onion cells.
    Cui P; Moreno Díaz de la Espina S
    Planta; 2003 May; 217(1):21-31. PubMed ID: 12721845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of nuclear WW domains and proline-rich proteins in dinoflagellate transcription.
    Guillebault D; Derelle E; Bhaud Y; Moreau H
    Protist; 2001 Jul; 152(2):127-38. PubMed ID: 11545436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs.
    Melcák I; Cermanová S; Jirsová K; Koberna K; Malínský J; Raska I
    Mol Biol Cell; 2000 Feb; 11(2):497-510. PubMed ID: 10679009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Telomeric DNA localization on dinoflagellate chromosomes: structural and evolutionary implications.
    Alverca E; Cuadrado A; Jouve N; Franca S; Moreno Díaz de la Espina S
    Cytogenet Genome Res; 2007; 116(3):224-31. PubMed ID: 17317964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joining the dots: production, processing and targeting of U snRNP to nuclear bodies.
    Shaw DJ; Eggleton P; Young PJ
    Biochim Biophys Acta; 2008 Nov; 1783(11):2137-44. PubMed ID: 18725249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear organization of splicing small nuclear ribonucleoproteins in adenovirus-infected cells.
    Bridge E; Carmo-Fonseca M; Lamond A; Pettersson U
    J Virol; 1993 Oct; 67(10):5792-802. PubMed ID: 8371343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae.
    Bachvaroff TR; Place AR
    PLoS One; 2008 Aug; 3(8):e2929. PubMed ID: 18698341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical characterization of nuclear ribonucleoprotein fibrils in cells of the central nervous system of the rat.
    Vázquez-Nin GH; Echeverría OM; Martin TE; Lührmann R; Fakan S
    Eur J Cell Biol; 1994 Dec; 65(2):291-7. PubMed ID: 7720724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of spliceosomal proteins in Trypanosomatids reveals novel functions in mRNA processing.
    Tkacz ID; Gupta SK; Volkov V; Romano M; Haham T; Tulinski P; Lebenthal I; Michaeli S
    J Biol Chem; 2010 Sep; 285(36):27982-99. PubMed ID: 20592024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomes of Protists: The crucible of evolution.
    Soyer-Gobillard MO; Dolan MF
    Int Microbiol; 2015 Dec; 18(4):209-16. PubMed ID: 27611673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogenesis of spliceosomal small nuclear ribonucleoproteins.
    Fischer U; Englbrecht C; Chari A
    Wiley Interdiscip Rev RNA; 2011; 2(5):718-31. PubMed ID: 21823231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cAMP-dependent reorganization of the Cajal bodies and splicing machinery in cultured Schwann cells.
    Fernandez R; Pena E; Navascues J; Casafont I; Lafarga M; Berciano MT
    Glia; 2002 Dec; 40(3):378-88. PubMed ID: 12420317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm.
    Jády BE; Darzacq X; Tucker KE; Matera AG; Bertrand E; Kiss T
    EMBO J; 2003 Apr; 22(8):1878-88. PubMed ID: 12682020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection.
    Cmarko D; Verschure PJ; Martin TE; Dahmus ME; Krause S; Fu XD; van Driel R; Fakan S
    Mol Biol Cell; 1999 Jan; 10(1):211-23. PubMed ID: 9880337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of snRNP and RNA from transcription sites in adenovirus-infected cells.
    Aspegren A; Bridge E
    Exp Cell Res; 2002 Jun; 276(2):273-83. PubMed ID: 12027457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.