BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16875659)

  • 21. Analysis of the DNA Fourier transform-infrared microspectroscopic signature using an all-reflecting objective.
    Mello ML; Vidal BC
    Micron; 2014 Jun; 61():49-52. PubMed ID: 24792446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams.
    Nasse MJ; Walsh MJ; Mattson EC; Reininger R; Kajdacsy-Balla A; Macias V; Bhargava R; Hirschmugl CJ
    Nat Methods; 2011 May; 8(5):413-6. PubMed ID: 21423192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.
    Chan KL; Kazarian SG
    Anal Chem; 2013 Jan; 85(2):1029-36. PubMed ID: 23244035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.
    Mattson EC; Unger M; Clède S; Lambert F; Policar C; Imtiaz A; D'Souza R; Hirschmugl CJ
    Analyst; 2013 Oct; 138(19):5610-8. PubMed ID: 23826609
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of B and T cells in human spleen sections by infrared microspectroscopic imaging.
    Krafft C; Salzer R; Soff G; Meyer-Hermann M
    Cytometry A; 2005 Apr; 64(2):53-61. PubMed ID: 15729712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-infrared microspectroscopic analysis of rat skin tissue heterogeneity in relation to noninvasive glucose sensing.
    Alexeeva NV; Arnold MA
    J Diabetes Sci Technol; 2009 Mar; 3(2):219-32. PubMed ID: 20144353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of multivariate curve resolution for analysis of FT-IR microspectroscopic images of in situ plant tissue.
    Budevska BO; Sum ST; Jones TJ
    Appl Spectrosc; 2003 Feb; 57(2):124-31. PubMed ID: 14610947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic full-field infrared imaging with multiple synchrotron beams.
    Stavitski E; Smith RJ; Bourassa MW; Acerbo AS; Carr GL; Miller LM
    Anal Chem; 2013 Apr; 85(7):3599-605. PubMed ID: 23458231
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring of denaturation processes in aged beef loin by Fourier transform infrared microspectroscopy.
    Kirschner C; Ofstad R; Skarpeid HJ; Høst V; Kohler A
    J Agric Food Chem; 2004 Jun; 52(12):3920-9. PubMed ID: 15186118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Using synchrotron-based FT-IR microspectroscopy to study erucamide migration in 50-micron-thick bilayer linear low-density polyethylene and polyolefin plastomer films.
    Sankhe SY; Hirt DE
    Appl Spectrosc; 2003 Jan; 57(1):37-43. PubMed ID: 14610934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time fourier transform-infrared analysis of carbon monoxide and nitric oxide in sidestream cigarette smoke.
    Thompson BT; Mizaikoff B
    Appl Spectrosc; 2006 Mar; 60(3):272-8. PubMed ID: 16608570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells.
    Vongsvivut J; Pérez-Guaita D; Wood BR; Heraud P; Khambatta K; Hartnell D; Hackett MJ; Tobin MJ
    Analyst; 2019 May; 144(10):3226-3238. PubMed ID: 30869675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FTIR-microspectroscopy of prion-infected nervous tissue.
    Kretlow A; Wang Q; Kneipp J; Lasch P; Beekes M; Miller L; Naumann D
    Biochim Biophys Acta; 2006 Jul; 1758(7):948-59. PubMed ID: 16887095
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy.
    Hammiche A; German MJ; Hewitt R; Pollock HM; Martin FL
    Biophys J; 2005 May; 88(5):3699-706. PubMed ID: 15722424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical fingerprinting of Arabidopsis using Fourier transform infrared (FT-IR) spectroscopic approaches.
    Gorzsás A; Sundberg B
    Methods Mol Biol; 2014; 1062():317-52. PubMed ID: 24057375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. FT-IR microspectroscopy for microbiological studies.
    Orsini F; Ami D; Villa AM; Sala G; Bellotti MG; Doglia SM
    J Microbiol Methods; 2000 Sep; 42(1):17-27. PubMed ID: 11000427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems.
    Kazarian SG; Chan KL
    Analyst; 2013 Apr; 138(7):1940-51. PubMed ID: 23400222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fourier transform-second-harmonic generation imaging of biological tissues.
    Rao RA; Mehta MR; Toussaint KC
    Opt Express; 2009 Aug; 17(17):14534-42. PubMed ID: 19687932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.