These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16875756)

  • 1. Muscling out malaria.
    Hughes DP; Boomsma JJ
    Trends Ecol Evol; 2006 Oct; 21(10):533-4. PubMed ID: 16875756
    [No Abstract]   [Full Text] [Related]  

  • 2. Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes.
    Knols BG; Bukhari T; Farenhorst M
    Future Microbiol; 2010 Mar; 5(3):339-41. PubMed ID: 20210542
    [No Abstract]   [Full Text] [Related]  

  • 3. Bio-environmental control of malaria in Nadiad, Kheda district, Gujarat.
    Sharma VP; Sharma RC; Gautam AS
    Indian J Malariol; 1986 Dec; 23(2):95-117. PubMed ID: 2883034
    [No Abstract]   [Full Text] [Related]  

  • 4. Mosquito-borne diseases are a threat in many parts of the world. Foreword.
    Lees RS; Chadee DD; Gilles JR
    Acta Trop; 2014 Apr; 132 Suppl():S1. PubMed ID: 24495632
    [No Abstract]   [Full Text] [Related]  

  • 5. [Combined infections in the pathology of larvae of blood-sucking mosquitoes. 1. Entomopathogenic qualities of bacterial complexes].
    Mikhnovskaia ND; Povazhnaia TN; Ianishevskaia GS; Kostiuchenko IP; Levchenko EE
    Med Parazitol (Mosk); 1987; (1):13-7. PubMed ID: 2883561
    [No Abstract]   [Full Text] [Related]  

  • 6. Prospects for biological control of mosquitoes.
    Rajagopalan PK
    Indian J Med Res; 1981 Jan; 73():163-73. PubMed ID: 6116666
    [No Abstract]   [Full Text] [Related]  

  • 7. [Prospects of improving microbial larvicides and methods of control of blood sucking insects and disease vectors].
    Alekseev AN
    Med Parazitol (Mosk); 1987; (1):3-8. PubMed ID: 2883565
    [No Abstract]   [Full Text] [Related]  

  • 8. Using micro-injection technique to assess fungal toxicity in mosquito control.
    Bawin T; Boukraa S; Seye F; Raharimalala FN; Zimmer JY; Delvigne F; Francis F
    Commun Agric Appl Biol Sci; 2014; 79(1):181-5. PubMed ID: 25864335
    [No Abstract]   [Full Text] [Related]  

  • 9. Larval susceptibility of Culex pipiens fatigans and Anopheles stephensi to Metarrhizum anisopliae.
    Balaraman K; Jambulingam P; Rajagopalan PK
    Indian J Med Res; 1981 Jan; 73 Suppl():160-2. PubMed ID: 6116669
    [No Abstract]   [Full Text] [Related]  

  • 10. Community based bioenvironmental control of malaria in Kheda District, Gujarat, India.
    Sharma VP; Sharma RC
    J Am Mosq Control Assoc; 1989 Dec; 5(4):514-21. PubMed ID: 2614400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Malaria in the Republic of Djibouti. Strategy for control using a biological antilarval campaign: indigenous larvivorous fishes (Aphanius dispar) and bacterial toxins].
    Louis JP; Albert JP
    Med Trop (Mars); 1988; 48(2):127-31. PubMed ID: 3043137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fishing out malaria in Assam, northeastern India: hope or hype?
    Dev V; Dash AP; Hojai D
    Trans R Soc Trop Med Hyg; 2008 Aug; 102(8):839-40. PubMed ID: 18554672
    [No Abstract]   [Full Text] [Related]  

  • 13. Biology of the predator mosquito, Toxorhynchites splendens (Wiedemann) (Diptera : culicidae).
    Bai MG; Panicker KN; Rajagopalan PK
    Indian J Med Res; 1981 Jul; 74():13-7. PubMed ID: 6118326
    [No Abstract]   [Full Text] [Related]  

  • 14. [Ecological aspects of mosquito biocontrol with implementation of GPS/GIS].
    Lonc E; Rydzanicz K; Jawień P
    Wiad Parazytol; 2010; 56(4):297-303. PubMed ID: 21452522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Experimental study of larval efficiency of Gambusia affinis holbrooki (GIRARD, 1859) (fish-Poecilidae)].
    Ghrab J; Bouattour A
    Arch Inst Pasteur Tunis; 1999; 76(1-4):33-8. PubMed ID: 14666756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characterization of entomopathogenic Bacillus samples isolated in Senegal and study of their toxicity for malaria vectors].
    Aïdara-Kane A; Fontenille D; Lochouarn L; Cosmao-Dumanoir V; Lecadet M
    Dakar Med; 1998; 43(2):170-3. PubMed ID: 10797955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Malaria vector control: current and future strategies.
    Takken W; Knols BG
    Trends Parasitol; 2009 Mar; 25(3):101-4. PubMed ID: 19168392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential.
    Walker K; Lynch M
    Med Vet Entomol; 2007 Mar; 21(1):2-21. PubMed ID: 17373942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae.
    Singh RK; Dhiman RC; Singh SP
    J Commun Dis; 2003 Jun; 35(2):96-101. PubMed ID: 15562955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predatory potential of Nepa cinerea against mosquito larvae in laboratory conditions.
    Singh RK; Singh SP
    J Commun Dis; 2004 Jun; 36(2):105-10. PubMed ID: 16295671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.