BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

705 related articles for article (PubMed ID: 16875846)

  • 41. Evidence for differential human slow-wave activity regulation across the brain.
    Zavada A; Strijkstra AM; Boerema AS; Daan S; Beersma DG
    J Sleep Res; 2009 Mar; 18(1):3-10. PubMed ID: 19021858
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Night-time right hemisphere superiority and daytime left hemisphere superiority: a repatterning of laterality across wake-sleep-wake states.
    Casagrande M; Bertini M
    Biol Psychol; 2008 Mar; 77(3):337-42. PubMed ID: 18162282
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The impact of chronic primary insomnia on the heart rate--EEG variability link.
    Jurysta F; Lanquart JP; Sputaels V; Dumont M; Migeotte PF; Leistedt S; Linkowski P; van de Borne P
    Clin Neurophysiol; 2009 Jun; 120(6):1054-60. PubMed ID: 19403330
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alpha electroencephalographic activity during rapid eye movement sleep in the spider monkey (Ateles geoffroyi): An index of arousal during sleep?
    Cruz-Aguilar MA; Hernández-González M; Guevara MA; Hernández-Arteaga E; Hidalgo Aguirre RM; Amezcua Gutiérrez CDC; Ramírez-Salado I
    J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):557-569. PubMed ID: 30129115
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual and computer-based detection of slow eye movements in overnight and 24-h EOG recordings.
    Magosso E; Ursino M; Zaniboni A; Provini F; Montagna P
    Clin Neurophysiol; 2007 May; 118(5):1122-33. PubMed ID: 17368090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Toward an integrative theory of sleep and dreaming.
    Muzur A
    J Theor Biol; 2005 Mar; 233(1):103-18. PubMed ID: 15615624
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Directional information flows between brain hemispheres during presleep wake and early sleep stages.
    Bertini M; Ferrara M; De Gennaro L; Curcio G; Moroni F; Vecchio F; De Gasperis M; Rossini PM; Babiloni C
    Cereb Cortex; 2007 Aug; 17(8):1970-8. PubMed ID: 17071847
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amygdaloid control of alerting and behavioral arousal in rats: involvement of serotonergic mechanisms.
    Sanford LD; Tejani-Butt SM; Ross RJ; Morrison AR
    Arch Ital Biol; 1995 Dec; 134(1):81-99. PubMed ID: 8919194
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-rapid eye movement sleep with low muscle tone as a marker of rapid eye movement sleep regulation.
    Tinguely G; Huber R; Borbély AA; Achermann P
    BMC Neurosci; 2006 Jan; 7():2. PubMed ID: 16401347
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High frequency activities in the human orbitofrontal cortex in sleep-wake cycle.
    Nishida M; Uchida S; Hirai N; Miwakeichi F; Maehara T; Kawai K; Shimizu H; Kato S
    Neurosci Lett; 2005 May; 379(2):110-5. PubMed ID: 15823426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sleep-stage-specific regulation of plasma catecholamine concentration.
    Rasch B; Dodt C; Mölle M; Born J
    Psychoneuroendocrinology; 2007; 32(8-10):884-91. PubMed ID: 17651907
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amino acid release from the rat oral pontine reticular nucleus across the sleep-wakefulness cycle.
    Hasegawa T; Azum S; Inoué S
    J Med Dent Sci; 2000 Mar; 47(1):87-93. PubMed ID: 12162531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological sleep-dependent changes in arterial blood pressure: central autonomic commands and baroreflex control.
    Silvani A
    Clin Exp Pharmacol Physiol; 2008 Sep; 35(9):987-94. PubMed ID: 18565197
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endogenous ouabain-like compounds in locus coeruleus modulate rapid eye movement sleep in rats.
    Jaiswal MK; Dvela M; Lichtstein D; Mallick BN
    J Sleep Res; 2010 Mar; 19(1 Pt 2):183-91. PubMed ID: 19878449
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Changes in extracellular glutamate levels in rat orbitofrontal cortex during sleep and wakefulness.
    Lopez-Rodriguez F; Medina-Ceja L; Wilson CL; Jhung D; Morales-Villagran A
    Arch Med Res; 2007 Jan; 38(1):52-5. PubMed ID: 17174723
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Is the failure to detect stimulus deviance during sleep due to a rapid fading of sensory memory or a degradation of stimulus encoding?
    Sabri M; Campbell KB
    J Sleep Res; 2005 Jun; 14(2):113-22. PubMed ID: 15910509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brain activity and temporal coupling related to eye movements during REM sleep: EEG and MEG results.
    Corsi-Cabrera M; Guevara MA; del Río-Portilla Y
    Brain Res; 2008 Oct; 1235():82-91. PubMed ID: 18625213
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Poor recall of eye-movement signals from Stage 2 compared to REM sleep: implications for models of dreaming.
    Conduit R; Crewther SG; Coleman G
    Conscious Cogn; 2004 Sep; 13(3):484-500. PubMed ID: 15336243
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Intense rapid eye movements during active sleep: an index of neurobehavioral instability.
    Becker PT; Thoman EB
    Dev Psychobiol; 1982 May; 15(3):203-10. PubMed ID: 7095287
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Neuronal phenomena associated with vigilance and consciousness: from cellular mechanisms to electroencephalographic patterns.
    Coenen AM
    Conscious Cogn; 1998 Mar; 7(1):42-53. PubMed ID: 9521831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.