These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 16875958)

  • 1. A model for reflectivity enhancement due to surface bound submicrometer particles.
    Couture O; Bevan PD; Cherin E; Cheung K; Burns PN; Foster FS
    Ultrasound Med Biol; 2006 Aug; 32(8):1247-55. PubMed ID: 16875958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating perfluorohexane particles with high-frequency ultrasound.
    Couture O; Bevan PD; Cherin E; Cheung K; Burns PN; Foster FS
    Ultrasound Med Biol; 2006 Jan; 32(1):73-82. PubMed ID: 16364799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular imaging with targeted perfluorocarbon nanoparticles: quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes.
    Marsh JN; Partlow KC; Abendschein DR; Scott MJ; Lanza GM; Wickline SA
    Ultrasound Med Biol; 2007 Jun; 33(6):950-8. PubMed ID: 17434667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental determination of phase velocity of perfluorocarbons: applications to targeted contrast agents.
    Hall CS; Lanza GM; Rose JH; Kaufmann RJ; Fuhrhop RW; Handley SH; Waters KR; Miller JG; Wickline SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):75-84. PubMed ID: 18238519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound contrast. Oral and i.v. agents amplify the image.
    Barr RG
    Diagn Imaging (San Franc); 1999 Mar; 21(3):56-61. PubMed ID: 10351114
    [No Abstract]   [Full Text] [Related]  

  • 6. Imaging the distribution of magnetic nanoparticles with ultrasound.
    Norton SJ; Vo-Dinh T
    IEEE Trans Med Imaging; 2007 May; 26(5):660-5. PubMed ID: 17518060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflection from bound microbubbles at high ultrasound frequencies.
    Couture O; Sprague MR; Cherin E; Burns PN; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):536-45. PubMed ID: 19411212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modes and acoustic scattering of microspheres and ultrasound contrast agents.
    Falou O; Jafari Sojahrood A; Kumaradas JC; Kolios MC
    J Acoust Soc Am; 2012 Sep; 132(3):1820-9. PubMed ID: 22978909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rayleigh theory of ultrasound scattering applied to liquid-filled contrast nanoparticles.
    Flegg MB; Poole CM; Whittaker AK; Keen I; Langton CM
    Phys Med Biol; 2010 Jun; 55(11):3061-76. PubMed ID: 20463372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique.
    Zhang D; Gong Y; Gong X; Liu Z; Tan K; Zheng H
    Phys Med Biol; 2007 Sep; 52(18):5531-44. PubMed ID: 17804880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of acoustic impedance for specific fluorocarbon liquids.
    Marsh JN; Hall CS; Wickline SA; Lanza GM
    J Acoust Soc Am; 2002 Dec; 112(6):2858-62. PubMed ID: 12509007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual-frequency excitation technique for enhancing the sub-harmonic emission from encapsulated microbubbles.
    Zhang D; Xi X; Zhang Z; Gong X; Chen G; Wu J
    Phys Med Biol; 2009 Jul; 54(13):4257-72. PubMed ID: 19531846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical relevance of pressure-dependent scattering at low acoustic pressures.
    Emmer M; Vos HJ; van Wamel A; Goertz DE; Versluis M; de Jong N
    Ultrasonics; 2007 Dec; 47(1-4):74-7. PubMed ID: 17845809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and characterization of a nano-scale contrast agent.
    Oeffinger BE; Wheatley MA
    Ultrasonics; 2004 Apr; 42(1-9):343-7. PubMed ID: 15047309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Difference frequency and its harmonic emitted by microbubbles under dual frequency excitation.
    Chen S; Kinnick R; Greenleaf JF; Fatemi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e123-6. PubMed ID: 16930662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acoustic insonation parameters on ultrasound contrast agent destruction.
    Yeh CK; Su SY
    Ultrasound Med Biol; 2008 Aug; 34(8):1281-91. PubMed ID: 18343019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for the ultrasound reflection from micro-beads and cells distributed in layers on a uniform surface.
    Couture O; Cherin E; Foster FS
    Phys Med Biol; 2007 Jul; 52(14):4189-204. PubMed ID: 17664602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations.
    Fenter P; Park C; Kohli V; Zhang Z
    J Synchrotron Radiat; 2008 Nov; 15(Pt 6):558-71. PubMed ID: 18955761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvements in the ultrasonic contrast of targeted perfluorocarbon nanoparticles using an acoustic transmission line model.
    Marsh JN; Hall CS; Scott MJ; Fuhrhop RW; Gaffney PJ; Wickline SA; Lanza GM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jan; 49(1):29-38. PubMed ID: 11833889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SURF imaging for contrast agent detection.
    Hansen R; Angelsen BA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):280-90. PubMed ID: 19251515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.