These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16876228)

  • 1. Characterization of Fe-humic complexes in an Fe-enriched biosolid by-product of water treatment.
    Pérez-Sanz A; Lucena JJ; Graham MC
    Chemosphere; 2006 Dec; 65(11):2045-53. PubMed ID: 16876228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal.
    Tsang DC; Graham NJ; Lo IM
    Chemosphere; 2009 Jun; 75(10):1338-43. PubMed ID: 19327814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation characteristics of humic acid over iron oxides/Fe 0 core-shell nanoparticles with UVA/H2O2.
    Nie Y; Hu C; Zhou L; Qu J; Wei Q; Wang D
    J Hazard Mater; 2010 Jan; 173(1-3):474-9. PubMed ID: 19762150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary multianalytical approach to study the distinctive structural features of the main humic fractions in solution: gray humic acid, brown humic acid, and fulvic acid.
    Baigorri R; Fuentes M; González-Gaitano G; García-Mina JM; Almendros G; González-Vila FJ
    J Agric Food Chem; 2009 Apr; 57(8):3266-72. PubMed ID: 19281175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses.
    Rao P; Mak MS; Liu T; Lai KC; Lo IM
    Chemosphere; 2009 Apr; 75(2):156-62. PubMed ID: 19157491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for strong but dynamic iron-humic colloidal associations in humic-rich coastal waters.
    Batchelli S; Muller FL; Chang KC; Lee CL
    Environ Sci Technol; 2010 Nov; 44(22):8485-90. PubMed ID: 20964358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of humic substances in landfill leachate and impact on the hydraulic conductivity of geosynthetic clay liners.
    Han YS; Lee JY; Miller CJ; Franklin L
    Waste Manag Res; 2009 May; 27(3):233-41. PubMed ID: 19423593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron.
    Liu T; Rao P; Lo IM
    Sci Total Environ; 2009 May; 407(10):3407-14. PubMed ID: 19232679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill.
    Chai X; Shimaoka T; Cao X; Guo Q; Zhao Y
    Chemosphere; 2007 Nov; 69(9):1446-53. PubMed ID: 17585995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coagulation of humic substances and dissolved organic matter with a ferric salt: an electron energy loss spectroscopy investigation.
    Jung AV; Chanudet V; Ghanbaja J; Lartiges BS; Bersillon JL
    Water Res; 2005 Oct; 39(16):3849-62. PubMed ID: 16112165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As.
    Sharma P; Ofner J; Kappler A
    Environ Sci Technol; 2010 Jun; 44(12):4479-85. PubMed ID: 20433135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.
    Lippold H; Evans ND; Warwick P; Kupsch H
    Chemosphere; 2007 Mar; 67(5):1050-6. PubMed ID: 17140629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and removal of dissolved organic matter (DOM) from landfill leachate rejected by nanofiltration.
    Zhang L; Li A; Lu Y; Yan L; Zhong S; Deng C
    Waste Manag; 2009 Mar; 29(3):1035-40. PubMed ID: 18947991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water.
    Geng B; Jin Z; Li T; Qi X
    Sci Total Environ; 2009 Sep; 407(18):4994-5000. PubMed ID: 19545888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-modified silica adsorbents for removal of humic substances in water.
    Moriguchi T; Yano K; Tahara M; Yaguchi K
    J Colloid Interface Sci; 2005 Mar; 283(2):300-10. PubMed ID: 15721898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals.
    Chien SW; Wang MC; Huang CC; Seshaiah K
    J Agric Food Chem; 2007 Jun; 55(12):4820-7. PubMed ID: 17497878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid.
    Zhang Z; Cissoko N; Wo J; Xu X
    J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater.
    Porcal P; Amirbahman A; Kopácek J; Novák F; Norton SA
    J Environ Monit; 2009 May; 11(5):1064-71. PubMed ID: 19436866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.