These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16876242)

  • 1. The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line.
    Silva GA; Coutinho OP; Ducheyne P; Shapiro IM; Reis RL
    Biomaterials; 2007 Jan; 28(2):326-34. PubMed ID: 16876242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles.
    Silva GA; Costa FJ; Coutinho OP; Radin S; Ducheyne P; Reis RL
    J Biomed Mater Res A; 2004 Sep; 70(3):442-9. PubMed ID: 15293318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advance in research of osteoblast adhesion to bioactive materials].
    Niu X; Luo Y; Pan J; Wang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):848-52. PubMed ID: 16156288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterization and cytocompatibility of three chitosan/polycation composite membranes for guided bone regeneration.
    Zheng Z; Wei Y; Wang G; Gong Y; Zhang X
    J Biomater Appl; 2009 Sep; 24(3):209-29. PubMed ID: 18987023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and differentiation of osteoblastic cells on 13-93 bioactive glass fibers and scaffolds.
    Brown RF; Day DE; Day TE; Jung S; Rahaman MN; Fu Q
    Acta Biomater; 2008 Mar; 4(2):387-96. PubMed ID: 17768097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of rapidly resorbable bone substitute materials on the temporal expression of the osteoblastic phenotype in vitro.
    Knabe C; Houshmand A; Berger G; Ducheyne P; Gildenhaar R; Kranz I; Stiller M
    J Biomed Mater Res A; 2008 Mar; 84(4):856-68. PubMed ID: 17635025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption.
    Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL
    Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics.
    Sun H; Wu C; Dai K; Chang J; Tang T
    Biomaterials; 2006 Nov; 27(33):5651-7. PubMed ID: 16904740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive expression of thrombospondin 1 in MC3T3-E1 osteoblastic cells inhibits mineralization.
    Ueno A; Miwa Y; Miyoshi K; Horiguchi T; Inoue H; Ruspita I; Abe K; Yamashita K; Hayashi E; Noma T
    J Cell Physiol; 2006 Nov; 209(2):322-32. PubMed ID: 16883596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of bioactive glass templates on osteoblast proliferation and in vitro synthesis of bone-like tissue.
    Ducheyne P; el-Ghannam A; Shapiro I
    J Cell Biochem; 1994 Oct; 56(2):162-7. PubMed ID: 7829574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds.
    Fuchs S; Ghanaati S; Orth C; Barbeck M; Kolbe M; Hofmann A; Eblenkamp M; Gomes M; Reis RL; Kirkpatrick CJ
    Biomaterials; 2009 Feb; 30(4):526-34. PubMed ID: 18977026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of an in vitro generated bone-like extracellular matrix on osteoblastic gene expression of marrow stromal cells.
    Pham QP; Kasper FK; Scott Baggett L; Raphael RM; Jansen JA; Mikos AG
    Biomaterials; 2008 Jun; 29(18):2729-39. PubMed ID: 18367245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro proliferation and osteoblastic phenotype expression of cells derived from human vertebral lamina and iliac crest.
    Defino HL; da Silva Herrero CF; Crippa GE; Bellesini LS; Beloti MM; Rosa AL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1549-53. PubMed ID: 19564764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of craniosynostotic osteoprogenitors and bioactive scaffolds for bone engineering.
    Santos-Ruiz L; Mowatt DJ; Marguerie A; Tukiainen D; Kellomäki M; Törmälä P; Suokas E; Arstila H; Ashammakhi N; Ferretti P
    J Tissue Eng Regen Med; 2007; 1(3):199-210. PubMed ID: 18038412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entrapment ability and release profile of corticosteroids from starch-based microparticles.
    Silva GA; Costa FJ; Neves NM; Coutinho OP; Dias AC; Reis RL
    J Biomed Mater Res A; 2005 May; 73(2):234-43. PubMed ID: 15761811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functionally graded electrospun polycaprolactone and beta-tricalcium phosphate nanocomposites for tissue engineering applications.
    Erisken C; Kalyon DM; Wang H
    Biomaterials; 2008 Oct; 29(30):4065-73. PubMed ID: 18649939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of osteoblast differentiation by slit2 in osteoblastic cells.
    Sun H; Dai K; Tang T; Zhang X
    Cells Tissues Organs; 2009; 190(2):69-80. PubMed ID: 19033678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polyphosphoric acid pre-treatment of titanium on attachment, proliferation, and differentiation of osteoblast-like cells (MC3T3-E1).
    Maekawa K; Yoshida Y; Mine A; van Meerbeek B; Suzuki K; Kuboki T
    Clin Oral Implants Res; 2008 Mar; 19(3):320-5. PubMed ID: 18190561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation.
    Vitale-Brovarone C; Verné E; Robiglio L; Appendino P; Bassi F; Martinasso G; Muzio G; Canuto R
    Acta Biomater; 2007 Mar; 3(2):199-208. PubMed ID: 17085090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.