These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16876417)

  • 21. Surface-EMG analysis for the quantification of thigh muscle dynamic co-contractions during normal gait.
    Strazza A; Mengarelli A; Fioretti S; Burattini L; Agostini V; Knaflitz M; Di Nardo F
    Gait Posture; 2017 Jan; 51():228-233. PubMed ID: 27825072
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Muscle activation profiles about the knee during Tai-Chi stepping movement compared to the normal gait step.
    Tseng SC; Liu W; Finley M; McQuade K
    J Electromyogr Kinesiol; 2007 Jun; 17(3):372-80. PubMed ID: 16723260
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.
    Lawrence D; Domone S; Heller B; Hendra T; Mawson S; Wheat J
    Gait Posture; 2015 Oct; 42(4):575-9. PubMed ID: 26404081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age and walking speed effects on muscle recruitment in gait termination.
    Tirosh O; Sparrow WA
    Gait Posture; 2005 Apr; 21(3):279-88. PubMed ID: 15760743
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slipping of the foot on the floor when pulling a pallet truck.
    Li KW; Chang CC; Chang WR
    Appl Ergon; 2008 Nov; 39(6):812-9. PubMed ID: 18222414
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of dynamic stability during adaptation to gait termination on a slippery surface.
    Oates AR; Frank JS; Patla AE
    Exp Brain Res; 2010 Feb; 201(1):47-57. PubMed ID: 19834697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in gait and EMG when walking with the Masai Barefoot Technique.
    Romkes J; Rudmann C; Brunner R
    Clin Biomech (Bristol, Avon); 2006 Jan; 21(1):75-81. PubMed ID: 16169641
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.
    Beschorner KE; Albert DL; Chambers AJ; Redfern MS
    J Biomech; 2014 Jan; 47(2):458-63. PubMed ID: 24267270
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss.
    Bloem BR; Allum JH; Carpenter MG; Verschuuren JJ; Honegger F
    Exp Brain Res; 2002 Jan; 142(1):91-107. PubMed ID: 11797087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomechanical strategies for mitigating unexpected slips: A review.
    Nunes J; Armada M; Pereira JL; Ribeiro NF; Carvalho Ó; Santos CP
    J Biomech; 2024 Aug; 173():112235. PubMed ID: 39059333
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of reactive balance adjustments in perturbed human walking: roles of proximal and distal postural muscle activity.
    Tang PF; Woollacott MH; Chong RK
    Exp Brain Res; 1998 Mar; 119(2):141-52. PubMed ID: 9535563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neither total muscle activation nor co-activation explains the youthful walking economy of older runners.
    Beck ON; Grabowski AM; Ortega JD
    Gait Posture; 2018 Sep; 65():163-168. PubMed ID: 30558925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in muscle activation patterns during step recovery in elderly women with and without a history of falls.
    Ochi A; Yokoyama S; Abe T; Yamada K; Tateuchi H; Ichihashi N
    Aging Clin Exp Res; 2014 Apr; 26(2):213-20. PubMed ID: 24104446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion.
    Marigold DS; Bethune AJ; Patla AE
    J Neurophysiol; 2003 Apr; 89(4):1727-37. PubMed ID: 12611998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shoe sole tread designs and outcomes of slipping and falling on slippery floor surfaces.
    Liu LW; Lee YH; Lin CJ; Li KW; Chen CY
    PLoS One; 2013; 8(7):e68989. PubMed ID: 23894388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Leg muscle activity during walking with assistive devices at varying levels of weight bearing.
    Clark BC; Manini TM; Ordway NR; Ploutz-Snyder LL
    Arch Phys Med Rehabil; 2004 Sep; 85(9):1555-60. PubMed ID: 15375835
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Required coefficient of friction during level walking is predictive of slipping.
    Beschorner KE; Albert DL; Redfern MS
    Gait Posture; 2016 Jul; 48():256-260. PubMed ID: 27367937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls.
    Beschorner K; Cham R
    Ergonomics; 2008 Dec; 51(12):1799-813. PubMed ID: 18937108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved hemiparetic muscle activation in treadmill versus overground walking.
    Harris-Love ML; Macko RF; Whitall J; Forrester LW
    Neurorehabil Neural Repair; 2004 Sep; 18(3):154-60. PubMed ID: 15375275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. EMG modulation in anticipation of a possible trip during walking in young and older adults.
    Pijnappels M; Bobbert MF; van Dieën JH
    J Electromyogr Kinesiol; 2006 Apr; 16(2):137-43. PubMed ID: 16111895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.