These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 16876761)
1. Hyphal formation of Candida albicans is controlled by electron transfer system. Watanabe T; Ogasawara A; Mikami T; Matsumoto T Biochem Biophys Res Commun; 2006 Sep; 348(1):206-11. PubMed ID: 16876761 [TBL] [Abstract][Full Text] [Related]
2. Iron deprivation induces EFG1-mediated hyphal development in Candida albicans without affecting biofilm formation. Hameed S; Prasad T; Banerjee D; Chandra A; Mukhopadhyay CK; Goswami SK; Lattif AA; Chandra J; Mukherjee PK; Ghannoum MA; Prasad R FEMS Yeast Res; 2008 Aug; 8(5):744-55. PubMed ID: 18547332 [TBL] [Abstract][Full Text] [Related]
3. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039 [TBL] [Abstract][Full Text] [Related]
4. Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Martin R; Walther A; Wendland J Eukaryot Cell; 2005 Oct; 4(10):1712-24. PubMed ID: 16215178 [TBL] [Abstract][Full Text] [Related]
5. Germ tube growth of Candida albicans. Gow NA Curr Top Med Mycol; 1997 Dec; 8(1-2):43-55. PubMed ID: 9504066 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional response of Candida albicans to hypoxia: linkage of oxygen sensing and Efg1p-regulatory networks. Setiadi ER; Doedt T; Cottier F; Noffz C; Ernst JF J Mol Biol; 2006 Aug; 361(3):399-411. PubMed ID: 16854431 [TBL] [Abstract][Full Text] [Related]
7. Antagonistic interplay of Swi1 and Tup1 on filamentous growth of Candida albicans. Mao X; Li Y; Wang H; Cao F; Chen J FEMS Microbiol Lett; 2008 Aug; 285(2):233-41. PubMed ID: 18564337 [TBL] [Abstract][Full Text] [Related]
8. Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Bachewich C; Whiteway M Eukaryot Cell; 2005 Jan; 4(1):95-102. PubMed ID: 15643065 [TBL] [Abstract][Full Text] [Related]
9. Catalase gene disruptant of the human pathogenic yeast Candida albicans is defective in hyphal growth, and a catalase-specific inhibitor can suppress hyphal growth of wild-type cells. Nakagawa Y Microbiol Immunol; 2008 Jan; 52(1):16-24. PubMed ID: 18352908 [TBL] [Abstract][Full Text] [Related]
11. Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid. Chung SC; Kim TI; Ahn CH; Shin J; Oh KB FEBS Lett; 2010 Nov; 584(22):4639-45. PubMed ID: 20965180 [TBL] [Abstract][Full Text] [Related]
12. UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans. Zeidler U; Lettner T; Lassnig C; Müller M; Lajko R; Hintner H; Breitenbach M; Bito A FEMS Yeast Res; 2009 Feb; 9(1):126-42. PubMed ID: 19054126 [TBL] [Abstract][Full Text] [Related]
13. Target specificity of the Candida albicans Efg1 regulator. Lassak T; Schneider E; Bussmann M; Kurtz D; Manak JR; Srikantha T; Soll DR; Ernst JF Mol Microbiol; 2011 Nov; 82(3):602-18. PubMed ID: 21923768 [TBL] [Abstract][Full Text] [Related]
14. Hemoglobin is utilized by Candida albicans in the hyphal form but not yeast form. Tanaka WT; Nakao N; Mikami T; Matsumoto T Biochem Biophys Res Commun; 1997 Mar; 232(2):350-3. PubMed ID: 9125179 [TBL] [Abstract][Full Text] [Related]
15. Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. Nobile CJ; Mitchell AP Curr Biol; 2005 Jun; 15(12):1150-5. PubMed ID: 15964282 [TBL] [Abstract][Full Text] [Related]
16. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Ku M; Baek YU; Kwak MK; Kang SO Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):772-788. PubMed ID: 27751952 [TBL] [Abstract][Full Text] [Related]
17. Candida albicans Cyr1, Cap1 and G-actin form a sensor/effector apparatus for activating cAMP synthesis in hyphal growth. Zou H; Fang HM; Zhu Y; Wang Y Mol Microbiol; 2010 Feb; 75(3):579-91. PubMed ID: 19943905 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of Candida albicans transformation in response to changes of pH. Konno N; Ishii M; Nagai A; Watanabe T; Ogasawara A; Mikami T; Matsumoto T Biol Pharm Bull; 2006 May; 29(5):923-6. PubMed ID: 16651720 [TBL] [Abstract][Full Text] [Related]
19. The moonlighting protein Tsa1p is implicated in oxidative stress response and in cell wall biogenesis in Candida albicans. Urban C; Xiong X; Sohn K; Schröppel K; Brunner H; Rupp S Mol Microbiol; 2005 Sep; 57(5):1318-41. PubMed ID: 16102003 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of hyphae formation and SIR2 expression in Candida albicans treated with fresh Allium sativum (garlic) extract. Low CF; Chong PP; Yong PV; Lim CS; Ahmad Z; Othman F J Appl Microbiol; 2008 Dec; 105(6):2169-77. PubMed ID: 19120662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]