BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16876815)

  • 1. Structural changes in poly(ethyleneimine) modified microemulsion.
    Note C; Koetz J; Kosmella S
    J Colloid Interface Sci; 2006 Oct; 302(2):662-8. PubMed ID: 16876815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of ionic liquid-modified microemulsions.
    Rojas O; Koetz J; Kosmella S; Tiersch B; Wacker P; Kramer M
    J Colloid Interface Sci; 2009 May; 333(2):782-90. PubMed ID: 19278685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyelectrolyte-modified inverse microemulsions and their use as templates for the formation of magnetite nanoparticles.
    Baier J; Koetz J; Kosmella S; Tiersch B; Rehage H
    J Phys Chem B; 2007 Jul; 111(29):8612-8. PubMed ID: 17523620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(N-vinyl-2-pyrrolidone) and 1-Octyl-2-pyrrolidinone Modified Ionic Microemulsions.
    Beitz T; Kötz J; Wolf G; Kleinpeter E; Friberg SE
    J Colloid Interface Sci; 2001 Aug; 240(2):581-589. PubMed ID: 11482969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-angle-neutron-scattering from giant water-in-oil microemulsion droplets. II. Polymer-decorated droplets in a quaternary system.
    Foster T; Sottmann T; Schweins R; Strey R
    J Chem Phys; 2008 Feb; 128(6):064902. PubMed ID: 18282069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved solubilization of Celecoxib in U-type nonionic microemulsions and their structural transitions with progressive aqueous dilution.
    Garti N; Avrahami M; Aserin A
    J Colloid Interface Sci; 2006 Jul; 299(1):352-65. PubMed ID: 16529763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components.
    Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T
    Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution.
    Kogan A; Aserin A; Garti N
    J Colloid Interface Sci; 2007 Nov; 315(2):637-47. PubMed ID: 17825310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and structural transition in microemulsions stabilized by aldonamide-type surfactants.
    Zielińska K; Wilk KA; Jezierski A; Jesionowski T
    J Colloid Interface Sci; 2008 May; 321(2):408-17. PubMed ID: 18329657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oil/water droplet formation by temperature change in the water/c(16)e(6)/mineral oil system.
    Morales D; Solans C; Gutiérrez JM; Garcia-Celma MJ; Olsson U
    Langmuir; 2006 Mar; 22(7):3014-20. PubMed ID: 16548551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein delivery using nanoparticles based on microemulsions with different structure-types.
    Graf A; Jack KS; Whittaker AK; Hook SM; Rades T
    Eur J Pharm Sci; 2008 Apr; 33(4-5):434-44. PubMed ID: 18329862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of cephalexin loaded nonionic microemulsions.
    Fanun M; Papadimitriou V; Xenakis A
    J Colloid Interface Sci; 2011 Sep; 361(1):115-21. PubMed ID: 21658706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confinement of DNA in water-in-oil microemulsions.
    Swami A; Espinosa G; Guillot S; Raspaud E; Boué F; Langevin D
    Langmuir; 2008 Oct; 24(20):11828-33. PubMed ID: 18823088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of internal structure of selected water-Tween 40-Imwitor 308-IPM microemulsions on ketoprofene release.
    Podlogar F; Bester Rogac M; Gasperlin M
    Int J Pharm; 2005 Sep; 302(1-2):68-77. PubMed ID: 16099611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase behavior and nano-emulsion formation by the phase inversion temperature method.
    Izquierdo P; Esquena J; Tadros TF; Dederen JC; Feng J; Garcia-Celma MJ; Azemar N; Solans C
    Langmuir; 2004 Aug; 20(16):6594-8. PubMed ID: 15274560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olive oil microemulsions: enzymatic activities and structural characteristics.
    Papadimitriou V; Sotiroudis TG; Xenakis A
    Langmuir; 2007 Feb; 23(4):2071-7. PubMed ID: 17279697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatible microemulsions of dicephalic aldonamide-type surfactants: formulation, structure and temperature influence.
    Wilk KA; Zielińska K; Hamerska-Dudra A; Jezierski A
    J Colloid Interface Sci; 2009 Jun; 334(1):87-95. PubMed ID: 19383561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using different structure types of microemulsions for the preparation of poly(alkylcyanoacrylate) nanoparticles by interfacial polymerization.
    Krauel K; Davies NM; Hook S; Rades T
    J Control Release; 2005 Aug; 106(1-2):76-87. PubMed ID: 15967536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.