BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 16877434)

  • 1. Potential role of microglia in retinal blood vessel formation.
    Checchin D; Sennlaub F; Levavasseur E; Leduc M; Chemtob S
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3595-602. PubMed ID: 16877434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microglia and macrophages are increased in response to ischemia-induced retinopathy in the mouse retina.
    Davies MH; Eubanks JP; Powers MR
    Mol Vis; 2006 May; 12():467-77. PubMed ID: 16710171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of adenosine A2a receptor in retinal development and oxygen-induced retinopathy.
    Taomoto M; McLeod DS; Merges C; Lutty GA
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):230-43. PubMed ID: 10634625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat.
    Dorfman A; Dembinska O; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):458-66. PubMed ID: 18172126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of age and Cx3cr1 deficiency on retinal microglia in the Ins2(Akita) diabetic mouse.
    Kezic JM; Chen X; Rakoczy EP; McMenamin PG
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):854-63. PubMed ID: 23307960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization.
    Kataoka K; Nishiguchi KM; Kaneko H; van Rooijen N; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1431-8. PubMed ID: 21051720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier.
    Mendes-Jorge L; Ramos D; Luppo M; Llombart C; Alexandre-Pires G; Nacher V; Melgarejo V; Correia M; Navarro M; Carretero A; Tafuro S; Rodriguez-Baeza A; Esperança-Pina JA; Bosch F; Ruberte J
    Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5997-6005. PubMed ID: 19608545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The retinal vasculature and function of the neural retina in a rat model of retinopathy of prematurity.
    Liu K; Akula JD; Falk C; Hansen RM; Fulton AB
    Invest Ophthalmol Vis Sci; 2006 Jun; 47(6):2639-47. PubMed ID: 16723481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional and structural changes resulting from strain differences in the rat model of oxygen-induced retinopathy.
    Dorfman AL; Polosa A; Joly S; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2436-50. PubMed ID: 19168901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of retinal function and glial cell response in a mouse model of oxygen-induced retinopathy.
    Vessey KA; Wilkinson-Berka JL; Fletcher EL
    J Comp Neurol; 2011 Feb; 519(3):506-27. PubMed ID: 21192081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-dependent differences in oxygen-induced retinopathy in the inbred rat.
    van Wijngaarden P; Coster DJ; Brereton HM; Gibbins IL; Williams KA
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1445-52. PubMed ID: 15790914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaso-obliteration in the canine model of oxygen-induced retinopathy.
    McLeod DS; Brownstein R; Lutty GA
    Invest Ophthalmol Vis Sci; 1996 Feb; 37(2):300-11. PubMed ID: 8603834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood-derived macrophages infiltrate the retina and activate Muller glial cells under experimental choroidal neovascularization.
    Caicedo A; Espinosa-Heidmann DG; Piña Y; Hernandez EP; Cousins SW
    Exp Eye Res; 2005 Jul; 81(1):38-47. PubMed ID: 15978253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for a brief period of enhanced oxygen susceptibility in the rat model of oxygen-induced retinopathy.
    Dembinska O; Rojas LM; Chemtob S; Lachapelle P
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2481-90. PubMed ID: 12091454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye.
    Kezic J; Xu H; Chinnery HR; Murphy CC; McMenamin PG
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1599-608. PubMed ID: 18385080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Expression of mRNA of vascular endothelial growth factor in a rat model of hyperoxia-induced retinopathy].
    Zhang ZH; Jiang L; Qiao LX
    Zhongguo Dang Dai Er Ke Za Zhi; 2007 Aug; 9(4):371-4. PubMed ID: 17706045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vasoneuronal effects of AT1 receptor blockade in a rat model of retinopathy of prematurity.
    Hatzopoulos KM; Vessey KA; Wilkinson-Berka JL; Fletcher EL
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(6):3957-70. PubMed ID: 24894399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aquaporin-1 independent microvessel proliferation in a neonatal mouse model of oxygen-induced retinopathy.
    Ruiz-Ederra J; Verkman AS
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4802-10. PubMed ID: 17898307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo.
    Yoo MH; Hyun HJ; Koh JY; Yoon YH
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4780-7. PubMed ID: 16303979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa.
    Arroba AI; Alvarez-Lindo N; van Rooijen N; de la Rosa EJ
    Invest Ophthalmol Vis Sci; 2011 Nov; 52(12):9124-30. PubMed ID: 22039242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.