BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

846 related articles for article (PubMed ID: 16877489)

  • 1. Effects of anaesthesia on fluid and solute transport in a C57BL6 mouse model of peritoneal dialysis.
    Shin SK; Kamerath CD; Gilson JF; Leypoldt JK
    Nephrol Dial Transplant; 2006 Oct; 21(10):2874-80. PubMed ID: 16877489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD.
    Heimbürger O; Waniewski J; Werynski A; Park MS; Lindholm B
    Nephrol Dial Transplant; 1994; 9(1):47-59. PubMed ID: 8177476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disproportionally low clearance of macromolecules from the plasma to the peritoneal cavity in a mouse model of peritoneal dialysis.
    Rippe A; Rippe C; Swärd K; Rippe B
    Nephrol Dial Transplant; 2007 Jan; 22(1):88-95. PubMed ID: 17050632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphotericin B does not increase peritoneal fluid removal.
    Wang T; Heimbürger O; Cheng HH; Bergström J; Lindholm B
    Adv Perit Dial; 1998; 14():3-10. PubMed ID: 10649681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed analysis of sodium removal by peritoneal dialysis: comparison with predictions from the three-pore model of membrane function.
    Aanen MC; Venturoli D; Davies SJ
    Nephrol Dial Transplant; 2005 Jun; 20(6):1192-200. PubMed ID: 15827048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time dependence of solute removal during a single exchange.
    Wang T; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Adv Perit Dial; 1997; 13():23-8. PubMed ID: 9360645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of an experimental rat model for peritoneal dialysis: fluid and solute transport characteristics.
    Park MS; Heimbürger O; Bergström J; Waniewski J; Werynski A; Lindholm B
    Nephrol Dial Transplant; 1994; 9(4):404-12. PubMed ID: 8084455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of peritoneal solute transfer by the peritoneal equilibration test in children.
    Schaefer F; Langenbeck D; Heckert KH; Schärer K; Mehls O
    Adv Perit Dial; 1992; 8():410-5. PubMed ID: 1361835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of peritoneal equilibration test with 2.27% and 3.86% glucose dialysis solution.
    Cara M; Virga G; Mastrosimone S; Girotto A; Rossi V; D'Angelo A; Bonfante L
    J Nephrol; 2005; 18(1):67-71. PubMed ID: 15772925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in peritoneal equilibration test results in patients aged above or below 60 years.
    Grzegorzewska AE; Leander M; Mariak I
    Adv Perit Dial; 2002; 18():33-9. PubMed ID: 12402583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peritoneal transport characteristics with glycerol-based dialysate in peritoneal dialysis.
    Smit W; de Waart DR; Struijk DG; Krediet RT
    Perit Dial Int; 2000; 20(5):557-65. PubMed ID: 11117247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphotericin B, mercury chloride and peritoneal transport in rabbits.
    Zweers MM; Douma CE; de Waart DR; Korevaar JC; Krediet RT; Struijk DG
    Clin Nephrol; 2001 Jul; 56(1):60-8. PubMed ID: 11499660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Comparison of peritoneal transport of solutes and water during CAPD with glucose or amino acids solutions. Preliminary report].
    Olszowska A; Waniewski J; Weryński A; Marciniak M; Wańkowicz Z
    Pol Merkur Lekarski; 2002 Nov; 13(77):389-92. PubMed ID: 12621755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of oxidative stress inhibition with trimetazidine on the peritoneal alterations induced by hypertonic peritoneal dialysis solution.
    Günal AI; Celiker H; Ustundag B; Akpolat N; Dogukan A; Akcicek F
    J Nephrol; 2003; 16(2):225-30. PubMed ID: 12768069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short peritoneal equilibration test: impact of preceding dwell time.
    Twardowski ZJ; Prowant BF; Moore HL; Lou LC; White E; Farris K
    Adv Perit Dial; 2003; 19():53-8. PubMed ID: 14763034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of three chronic dialysis models.
    Peng WX; Guo QY; Liu SM; Liu CZ; Lindholm B; Wang T
    Adv Perit Dial; 2000; 16():51-4. PubMed ID: 11045261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyaluronan prevents the decreased net ultrafiltration caused by increased peritoneal dialysate fill volume.
    Wang T; Cheng HH; Heimbürger O; Waniewski J; Bergström J; Lindholm B
    Kidney Int; 1998 Feb; 53(2):496-502. PubMed ID: 9461112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis.
    Waniewski J; Heimbürger O; Werynski A; Lindholm B
    Nephrol Dial Transplant; 1992; 7(1):50-6. PubMed ID: 1316581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributed modeling of glucose-induced osmotic flow.
    Waniewski J; Dutka V; Stachowska-Pietka J; Cherniha R
    Adv Perit Dial; 2007; 23():2-6. PubMed ID: 17886594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of low glucose degradation products peritoneal dialysis fluid on the peritoneal fibrosis and vascularization in a chronic rat model.
    Kim CD; Kwon HM; Park SH; Oh EJ; Kim MH; Choi SY; Choi MJ; Kim IS; Park MS; Kim YJ; Kim YL
    Ther Apher Dial; 2007 Feb; 11(1):56-64. PubMed ID: 17309576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.