BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16877760)

  • 1. Human ACF1 alters the remodeling strategy of SNF2h.
    He X; Fan HY; Narlikar GJ; Kingston RE
    J Biol Chem; 2006 Sep; 281(39):28636-47. PubMed ID: 16877760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H.
    Aalfs JD; Narlikar GJ; Kingston RE
    J Biol Chem; 2001 Sep; 276(36):34270-8. PubMed ID: 11435432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diverse regulation of SNF2h chromatin remodeling by noncatalytic subunits.
    He X; Fan HY; Garlick JD; Kingston RE
    Biochemistry; 2008 Jul; 47(27):7025-33. PubMed ID: 18553938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.
    Hwang WL; Deindl S; Harada BT; Zhuang X
    Nature; 2014 Aug; 512(7513):213-7. PubMed ID: 25043036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at active sites.
    Erdel F; Schubert T; Marth C; Längst G; Rippe K
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19873-8. PubMed ID: 20974961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human CCAAT/enhancer-binding protein β interacts with chromatin remodeling complexes of the imitation switch subfamily.
    Steinberg XP; Hepp MI; Fernández García Y; Suganuma T; Swanson SK; Washburn M; Workman JL; Gutiérrez JL
    Biochemistry; 2012 Feb; 51(5):952-62. PubMed ID: 22242598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nucleotide-driven switch regulates flanking DNA length sensing by a dimeric chromatin remodeler.
    Leonard JD; Narlikar GJ
    Mol Cell; 2015 Mar; 57(5):850-859. PubMed ID: 25684208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler.
    Sinha KK; Gross JD; Narlikar GJ
    Science; 2017 Jan; 355(6322):. PubMed ID: 28104838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability.
    Hoffmeister H; Fuchs A; Komives E; Groebner-Ferreira R; Strobl L; Nazet J; Heizinger L; Merkl R; Dove S; Längst G
    FEBS J; 2021 Jul; 288(13):4000-4023. PubMed ID: 33403747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent human remodeling complexes remove nucleosomes from strong positioning sequences.
    Pham CD; He X; Schnitzler GR
    Nucleic Acids Res; 2010 Jan; 38(2):400-13. PubMed ID: 19906705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes.
    Logie C; Tse C; Hansen JC; Peterson CL
    Biochemistry; 1999 Feb; 38(8):2514-22. PubMed ID: 10029546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swapping function of two chromatin remodeling complexes.
    Fan HY; Trotter KW; Archer TK; Kingston RE
    Mol Cell; 2005 Mar; 17(6):805-15. PubMed ID: 15780937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The histone H4 tail regulates the conformation of the ATP-binding pocket in the SNF2h chromatin remodeling enzyme.
    Racki LR; Naber N; Pate E; Leonard JD; Cooke R; Narlikar GJ
    J Mol Biol; 2014 May; 426(10):2034-44. PubMed ID: 24607692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits.
    Phelan ML; Sif S; Narlikar GJ; Kingston RE
    Mol Cell; 1999 Feb; 3(2):247-53. PubMed ID: 10078207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors.
    Barisic D; Stadler MB; Iurlaro M; Schübeler D
    Nature; 2019 May; 569(7754):136-140. PubMed ID: 30996347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role for hACF1 in the G2/M damage checkpoint.
    Sánchez-Molina S; Mortusewicz O; Bieber B; Auer S; Eckey M; Leonhardt H; Friedl AA; Becker PB
    Nucleic Acids Res; 2011 Oct; 39(19):8445-56. PubMed ID: 21745822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution AFM studies of human Swi-Snf and its interactions with MMTV DNA and chromatin.
    Wang H; Bash R; Lindsay SM; Lohr D
    Biophys J; 2005 Nov; 89(5):3386-98. PubMed ID: 16100261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromatin remodeling by ISW2 and SWI/SNF requires DNA translocation inside the nucleosome.
    Zofall M; Persinger J; Kassabov SR; Bartholomew B
    Nat Struct Mol Biol; 2006 Apr; 13(4):339-46. PubMed ID: 16518397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins.
    Poot RA; Dellaire G; Hülsmann BB; Grimaldi MA; Corona DF; Becker PB; Bickmore WA; Varga-Weisz PD
    EMBO J; 2000 Jul; 19(13):3377-87. PubMed ID: 10880450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activity of the yeast SWI/SNF complex on reconstituted nucleosome arrays.
    Logie C; Peterson CL
    EMBO J; 1997 Nov; 16(22):6772-82. PubMed ID: 9362491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.