These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 16877766)

  • 1. Protein osmotic pressure and cross-bridge attachment determine the stiffness of thin filaments in muscle ex vivo.
    Grazi E; Di Bona C
    J Biochem; 2006 Jul; 140(1):39-42. PubMed ID: 16877766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-fracture studies on the cross-bridge angle distribution at various states and the thin filament stiffness in single skinned frog muscle fibers.
    Suzuki S; Oshimi Y; Sugi H
    J Electron Microsc (Tokyo); 1993 Apr; 42(2):107-16. PubMed ID: 8350022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contraction due to bimetallic, short-lived super-coiling in the helical, double stranded filaments of striated muscle.
    Hummel Z
    Physiol Chem Phys Med NMR; 1992; 24(1):35-42. PubMed ID: 1594659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force measurements by micromanipulation of a single actin filament by glass needles.
    Kishino A; Yanagida T
    Nature; 1988 Jul; 334(6177):74-6. PubMed ID: 3386748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of the structural transition of muscle thin filaments observed by fluorescence resonance energy transfer.
    Shitaka Y; Kimura C; Iio T; Miki M
    Biochemistry; 2004 Aug; 43(33):10739-47. PubMed ID: 15311935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Actin filaments in honeybee-flight muscle move collectively.
    Trombitás K; Pollack GH
    Cell Motil Cytoskeleton; 1995; 32(2):145-50. PubMed ID: 8681397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.
    Granzier HL; Wang K
    J Gen Physiol; 1993 Feb; 101(2):235-70. PubMed ID: 7681097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotic stress is the main determinant of the diameter of the actin filament.
    Grazi E; Schwienbacher C; Magri E
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1377-81. PubMed ID: 8280155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-bridge angle distribution and thin filament stiffness in frog skeletal muscle fibers as studied by quick-freeze deep-etch electron microscopy.
    Suzuki S; Oshimi Y; Sugi H
    Adv Exp Med Biol; 1993; 332():57-68; discussion 68-70. PubMed ID: 8109369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Actin may contribute to the power stroke in the binary actomyosin system.
    Grazi E; Magri E; Schwienbacher C; Trombetta G
    Biochem Biophys Res Commun; 1994 Apr; 200(1):59-64. PubMed ID: 8166734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein osmotic pressure modulates actin filament length distribution.
    Grazi E; Pozzati S
    J Theor Biol; 2008 Apr; 251(3):411-20. PubMed ID: 18249412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Twitchin-actin linkage hypothesis" for the catch mechanism in molluscan muscles: evidence that twitchin interacts with myosin, myorod, and paramyosin core and affects properties of actomyosin.
    Shelud'ko NS; Matusovsky OS; Permyakova TV; Matusovskaya GG
    Arch Biochem Biophys; 2007 Oct; 466(1):125-35. PubMed ID: 17720132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometrical correspondence identified and a new interaction unit suggested in striated muscle.
    Nosaka M
    J Theor Biol; 2006 Jan; 238(2):464-73. PubMed ID: 16112137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Electron microscopy study of the interaction of F-protein (phosphofructokinase) with actin-containing filaments].
    Freĭdina NA; Shpagina MD; Udal'tsov SN; Podlubnaia ZA
    Biofizika; 1985; 30(5):922-4. PubMed ID: 2932165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remote control of A-band cardiac thin filaments by the I-Z-I protein network of cardiac sarcomeres.
    Solaro RJ
    Trends Cardiovasc Med; 2005 May; 15(4):148-52. PubMed ID: 16099379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for unique structural change of thin filaments upon calcium activation of insect flight muscle.
    Iwamoto H
    J Mol Biol; 2009 Jul; 390(1):99-111. PubMed ID: 19433094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional image reconstruction of insect flight muscle. II. The rigor actin layer.
    Taylor KA; Reedy MC; Córdova L; Reedy MK
    J Cell Biol; 1989 Sep; 109(3):1103-23. PubMed ID: 2768335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the theory of muscle contraction: filament extensibility and the development of isometric force and stiffness.
    Mijailovich SM; Fredberg JJ; Butler JP
    Biophys J; 1996 Sep; 71(3):1475-84. PubMed ID: 8874021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation.
    Kojima H; Ishijima A; Yanagida T
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12962-6. PubMed ID: 7809155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Thin filament elasticity and its role in the muscle contraction].
    Skubiszak L
    Biofizika; 2006; 51(5):786-94. PubMed ID: 17131813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.